The Problem of the Origin of Subgenomes B, A, D of Bread Wheat Triticum aestivum L.: Old Facts and New Evidences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bread wheat (Triticum aestivum L.) belongs to the wheat tribe, which includes representatives of the genera Triticum, Aegilops, Secale, Hordeum, etc. The genera Aegilops and Triticum in the process of evolution have repeatedly hybridized with each other, including with the formation of polyploid forms that have the status of species and belong to the so-called TriticumAegilops alliance. As the methodological possibilities developed, various approaches were used to determine the ancestors of certain species of this alliance, ranging directly from interspecific crosses and cytogenetic methods to whole genome sequencing of non-nuclear and nuclear genomes. It has been established that the genome of bread wheat T. aestivum, one of the main food crops in the world, consists of three related subgenomes, which received the symbols A, B, D. At present, only the donor of the D subgenome, which is Aegilops tauschii Coss., is reliably known. The ancestor of subgenome A is presumably considered to be T. urartu Thum. ex Gandil. Information about the donor of the B subgenome is less clear, but most likely it is Ae. speltoides Tausch. or a species close to it. This review is devoted to the consideration of some old data on the putative donors of bread wheat, which, taking into account the maternal form, the BBAADD genome, and the refinement of some phylogenetic relationships in the Triticum–Aegilops alliance in the light of new information obtained as a result of whole genome sequencing of wheat.

About the authors

A. R. Kuluev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal
Research Centre, Russian Academy of Sciences

Author for correspondence.
Email: kuluev.azat91@yandex.ru
Russia, Ufa

B. R. Kuluev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal
Research Centre, Russian Academy of Sciences

Email: kuluev.azat91@yandex.ru
Russia, Ufa

A. V. Chemeris

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal
Research Centre, Russian Academy of Sciences

Email: kuluev.azat91@yandex.ru
Russia, Ufa

References

  1. Вавилова В.Ю., Конопацкая И.Д., Блинов А.Г., Гончаров Н.П. Эволюция гена Btr1-А у диплоидных видов пшениц рода Triticum L. // Генетика. 2020. Т. 56. № 5. С. 609–614.
  2. Головнина К.А., Кондратенко Е.Я., Блинов А.Г., Гончаров Н.П. Филогения A-геномов диких и возделываемых видов пшениц // Генетика. 2009. Т. 45. № 11. С. 1540–1547.
  3. Гончаров Н.П., Головнина К.А., Кондратенко Е.Я. и др. Сравнительно-генетический анализ голозерной диплоидной пшеницы Triticum sinskajae и ее исходной формы T. monococcum // Генетика. 2007. Т. 43. № 11. С. 1248–1256
  4. Дорофеев В.Ф., Мигушова Э.Ф. Новое в эволюции и систематике пшеницы // Докл. ВАСХНИЛ. 1981. № 2. С. 6–9.
  5. Жуковский П.М. Критико-систематический обзор видов рода Aegilops // Тр. по прикл. бот. и селек. 1928. Т. 19. № 2. С. 417–609.
  6. Кирьянова О.Ю., Кулуев Б.Р., Кулуев А.Р. и др. Мультиплексный in silico RAPD-анализ ряда родственных растений с отличающимися размерами геномов и перспективы такого подхода для ДНК-паспортизации сортов сельскохозяйственных растений // Биомика. 2020. Т. 12. № 2. С. 194–210.
  7. Конарев А.В., Гаврилюк И.П., Мигушова Э.Ф. Дифференциация диплоидных пшениц по данным иммунохимического анализа глиадина // Докл. ВАСХНИЛ. 1974а. Т. 6. С. 12.
  8. Конарев В.Г., Хакимова А.Г., Гаврилюк И.П., Мигушова Э.Ф. Дифференциация генома D по данным электрофоретического и иммунохимического анализа глиадина Aegilops squarrosa L. (Ae. tauschii Coss.) // C.-x. биол. 1974б. Т. 9. № 3. С. 352–358.
  9. Конарев В.Г., Гаврилюк И.П., Пенева Т.И. и др. О природе и происхождении геномов пшеницы по данным биохимии и иммунохимии белков зерна // C.-x. биол. 1976. Т. 11. № 5. С. 656–665.
  10. Кулуев А.Р., Матниязов Р.Т., Кулуев Б.Р., Чемерис А.В. Молекулярно-генетическое исследование Triticum sinskajae A. Filat. et Kurk. с помощью RAPD-анализа и путем сравнения нуклеотидных последовательностей вариабельного межгенного участка petN-trnC-GCA хлоропластного генома и интрона гена гистона H3.2 // Экол. генетика. 2018. Т. 16. № 1. С. 53–59.
  11. Кулуев А.Р., Матниязов Р.Т., Чемерис Д.А. и др. Филогенетические взаимоотношения в пшенично-эгилопсном альянсе через призму хлоропластного генома // Биомика. 2020. Т. 12. № 4. С. 532–544.
  12. Матниязов Р.Т., Чемерис Д.А., Кулуев А.Р., Чемерис А.В. Современные представления о родственных взаимоотношениях в пшенично-эгилопсном альянсе // Биомика. 2016. Т. 8. № 4. С. 297–310.
  13. Мигушова Э.Ф. К вопросу о происхождении геномов пшеницы // Тр. по прикл. бот., ген. и селек. 1975. Т. 55. № 3. С. 3–26.
  14. Никоноров Ю.М., Вильданов И.М., Чемерис А.В., Вахитов В.А. Нуклеотидная последовательность и геномная организация повторяющейся единицы АТ-богатого семейства повторов диплоидной пшеницы Triticum monococcum L // Генетика. 1997. Т. 33. С. 1649–1654.
  15. Пенева T.И., Мигушова Э.Ф. Структура генома S (В) эгилопсов группы Sitopsis по данным электрофоретического и иммунохимического анализа глиадинов // Тр. по прикл. бот., ген. и селек. 1973. Т. 52. № 1. С. 178–192.
  16. Светозарова В.В. О втором геноме Triticum timopheevi Zhuk. // ДАН СССР. 1939. Т. 23. № 5. С. 472–476.
  17. Филатенко А.А., Куркиев У.К. Пшеница Синской (Новый вид – Triticum sinskajae A. Filat. et Kurk.) // Тр. по прикл. бот., ген. и селек. 1975. Т. 54. № 1. С. 239–241.
  18. Alonge M., Shumate A., Puiu D. et al. Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies // Genetics. 2020. V. 216. № 2. P. 599–608.
  19. Asakura N., Mori N., Nakamura C., Ohtsuka I. Genotyping of the Q locus in wheat by a simple PCR-RFLP method // Genes Genet. Syst. 2009. V. 84. P. 233–237.
  20. Avni R., Nave M., Barad O. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication // Science. 2017. V. 357. № 6346. P. 93–97.
  21. Avni R., Lux T., Minz-Dub A. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement // Plant J. 2022. V. 110. № 1. P. 179–192.
  22. Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species // Genome. 1996. V. 39. P. 1150–1158.
  23. Badaeva E.D., Konovalov F.A., Knüpffer H. et al. Genetic diversity, distribution and domestication history of the neglected GGAtAt genepool of wheat // Theor. Appl. Genet. 2022. V. 135. P. 755–776.
  24. Baidouri M., Murat F., Veyssiere M. et al. Reconciling the evolutionary origin of bread wheat (Triticum aestivum) // New Phytol. 2017. V. 213. P. 1477–1486.
  25. Bernhardt N., Brassac J., Kilian B., Blattner F. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae // BMC Evol. Biol. 2017. V. 17. P. 141.
  26. Brandolini A., Vaccino P., Boggini G. et al. Quantification of genetic relationships among A genomes of wheats A // Genome. 2006. V. 49. P. 297–305.
  27. Caldwell K.S., Dvorak J., Lagudah E.S. et al. Sequence polymorphism in polyploid wheat and their D-genome diploid ancestor // Genetics. 2004. V. 167. № 2. P. 941–947.
  28. Castagna R., Saponaro C., Pogna N. et al. Allelic variation at the Gli-Alm, Gli-A2m and Glu-Alm loci and breadmaking quality in diploid wheat Triticum monococcum // Genet. Res. Camb. 1995. V. 66. P. 127–137.
  29. Chen W.J., Yan H., Wang Y. et al. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae // Mol. Phylogenet. Evol. 2020. V. 149. № 106838. P. 1–10.
  30. Dizkirici A., Kansu C., Onde S. Molecular phylogeny of Triticum and Aegilops genera based on ITS and matK sequence data // Pakistan J. Botan. 2016. V. 48. P. 143–153.
  31. Dvorak J., Zhang H.-B. Variation in repeated nucleotide sequences sheds light on the phylogeny of the B and G genomes // PNAS USA. 1990. V. 87. P. 9640–9644.
  32. Dvorak J., Zhang H.-B. Reconstruction of the phylogeny of the genus Triticum from variation in repeated nucleotide sequences // Theor. Appl. Genet. 1992. V. 84. P. 419–429.
  33. Dvorak J., Terlizzi P., Zhang H.-B., Resta P. The evolution of polyploid wheats: identification of the A genome donor species // Genome. 1993. V. 36. P. 21–31.
  34. Dvorak J., Luo M.-C., Yang Z.-L., Zhang H.-B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat // Theor. Appl. Genet. 1998. V. 97. P. 657–670.
  35. Eig A. Monographisch – Kritische Uebersicht der Gattung Aegilops // Repert. Spec. Nov. Reg. Veg. Beih. Berlin. 1929. V. 55. P. 228.
  36. Feldman M., Sears R. The wild gene resources of wheat // Sci. Am. 1981. № 1. P. 98–109.
  37. Fu Y.B. Characterizing chloroplast genomes and inferring maternal divergence of the Triticum–Aegilops complex // Sci. Rep. 2021. V. 11. № 1 (15363). P. 1–15.
  38. Gaurav K., Arora S., Silva P. et al. Evolution of the bread wheat D-subgenome and enriching it with diversity from Aegilops tauschii // bioRxiv. 2021. P. 1–63.
  39. Gerlach W.L., Miller T.E., Flavell R.B. The nucleolus organizers of diploid wheats revealed by in situ hybridization // Theor. Appl. Genet. 1980. V. 58. № 3–4. P. 97–100.
  40. Glémin S., Scornavacca C., Dainat J. et al. Pervasive hybridizations in the history of wheat relatives // Sci. Adv. 2019. V. 5. № 5. P. 1–10.
  41. Gogniashvili M., Naskidashvili P., Bedoshvili D. et al. Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.) // Gen. Res. Crop. Evol. 2015. V. 62. P. 1269–1277.
  42. Golovnina K.A., Glushkov S.A., Blinov A.G. et al. Molecular phylogeny of the genus Triticum L. // Plant Syst. Evol. 2007. V. 264. P. 195–216.
  43. Goncharov N.P. Genus Triticum L. taxonomy: the present and the future // Plant. Syst. Evol. 2011. V. 295. P. 1–11.
  44. Goncharov N.P., Golovnina K.A., Kilian B. et al. Evolutionary history of wheats – the main cereal of mankind // Bios. Orig. Evol. Boston, MA / Eds N. Dobretsov et al. 2008. C. 407–419.
  45. Gornicki P., Zhu H., Wang J. et al. The chloroplast view of the evolution of polyploid wheat // New Phytol. 2014. V. 204. P. 704–714.
  46. Guo C.H., Terachi T. Variations in a hotspot region of chloroplast DNAs among common wheat and Aegilops revealed by nucleotide sequence analysis // Genes Genet. Syst. 2005. V. 80. P. 277–285.
  47. Guo W., Xin M., Wang Z. et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat // Nat. Commun. 2020. V. 11. Art. 5085. P. 1–12.
  48. Haider N. Evidence for the origin of the B genome of bread wheat based on chloroplast DNA // Turk. J. Agric. Forest. 2012. V. 36. P. 13–25.
  49. Haider N. The origin of the B-genome of bread wheat (Triticum aestivum L. // Гeнeтикa. 2013. T. 49. № 3. C. 263–274.
  50. Hutchinson J., Miller T.E. The nucleolar organisers of tetraploid and hexaploid wheats revealed by in situ hibridisation // Theor. Appl. Genet. 1982. V. 61. P. 285–288.
  51. Huynh S., Marcussen T., Felbera F., Parisodd C. Hybridization preceded radiation in diploid wheats // Mol. Phylogenet. Evolution. 2019. V. 139. № 106554. P. 1–10.
  52. International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome // Science. 2018. V. 361. № 6403. P. 1–13.
  53. Jenkins J.A. Chromosome homologies in wheat and Aegilops // Am. J. Bot. 1929. V. 16. P. 238–245.
  54. Johnson B.L., Dhaliwal H.S. Triticum urartu and genome evolution in the tetraploid wheats // Am. J. Bot. 1978. V. 65. P. 907–918.
  55. Khlestkina E.K., Salina E.A. Genome-specific markers of tetraploid wheats and their putative diploid progenitor species // Plant Breed. 2001. V. 120. P. 227–232.
  56. Kihara H. About cytological studies on some cereals // Bot. Mag. (Tokyo). 1919. V. 33. P. 17–38.
  57. Kihara H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare // Agricul. Horticult. 1944. V. 19. P. 13–14.
  58. Kihara H. Factors affecting the evolution of common wheat // Ind. J. Genet. Pl. Breed. 1966. V. 26A. P. 14–28.
  59. Kilian B., Ozkan H., Deusch O. et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes // Mol. Biol. Evol. 2007. V. 24. № 1. P. 217–227.
  60. Levy A.A., Feldman M. Evolution and origin of bread wheat // Plant Cell. 2022. V. 4. P. 1–19.
  61. Li L.F., Zhang Z.B., Wang Z.H. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome // Mol. Plant. 2022. V. 15. № 3. P. 488–503.
  62. Liang D., Zhang M., Liu X. et al. Development and identification of four new synthetic hexaploid wheat lines with solid stems // Sci. Rep. 2022. V. 12. № 1 (4898). P. 1–13.
  63. Lilienfeld F., Kihara H. Genomanalyse bei Triticum and Aegilops. V. Triticum timopheevi Zhuk. // Cytologia (Tokyo). 1934. V. 6. P. 87–122.
  64. Ling H.Q., Dvorak J., Zhao S. et al. Draft genome of the wheat A-genome progenitor Triticum urartu // Nature. 2013. V. 496. P. 87–90.
  65. Ling H.Q., Ma B., Liang C. Genome sequence of the progenitor of wheat A subgenome Triticum urartu // Nature. 2018. V. 557. P. 424–428.
  66. Lubna A.S., Jan R., Khan A.L. et al. The plastome sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) exhibit evolutionary changes, structural characterization, comparative analysis, phylogenomics and time divergence // Int. J. Mol. Sci. 2022. V. 23. № 5 (2783). P. 1–21.
  67. Luo M.-C., Gu Y., You F. et al. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor // PNAS USA. 2013. V. 110. № 19. P. 7940–7945.
  68. Luo M.-C., Gu Y., Puiu D. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii // Nature. 2017. V. 551. P. 498–502.
  69. Maccaferri M., Harris N.S., Twardziok S.O. et al. Durum wheat genome highlights past domestication signatures and future improvement targets // Nat. Genet. 2019. V. 51. P. 885–895.
  70. Mandy G. New concept of the origin of Triticum aestivum L. // Acta Agro. Hung. 1970. V. 19. P. 413–418.
  71. Marcussen T., Sandve S., Heier L. et al. Ancient hybridizations among the ancestral genomes of bread wheat // Science. 2014. V. 345. P. 1–4.
  72. McFadden E., Sears E. The origin of Triticum spelta and its free-threshing hexaploid relatives // J. Hered. 1946. V. 37. P. 81–89.
  73. Middleton C., Senerchia N., Stein N. et al. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe // PLoS One. 2014. V. 9. № 3. P. 1–12.
  74. Miki Y., Yoshida K., Mizuno N. et al. Origin of wheat B-genome chromosomes inferred from RNA sequencing analysis of leaf transcripts from section Sitopsis species of Aegilops // DNA Res. 2019. V. 26. № 2. P. 171–182.
  75. Mizuno N., Yamasaki M., Matsuoka Y.S. et al. Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat // Mol. Ecol. 2010. V. 19. № 5. P. 999–1013.
  76. Nyine M., Adhikari E., Clinesmith M. et al. The aplotype-based analysis of Aegilops tauschii introgression into hard red winter wheat and its impact on productivity // Traits. Front Plant Sci. 2021. V. 12. № 716955. P. 1–16.
  77. Ogihara Y., Tsunewaki K. Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis // Theor. App. Gen. 1988. V. 76. P. 321–332.
  78. Ogihara Y., Isono K., Kojima T. et al. Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones // Plant Mol. Biol. Report. 2000. V. 18. P. 243–253.
  79. Ogihara Y., Isono K., Kojima T. et al. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA // Mol. Genet. Genom. 2002. V. 266. P. 740–746.
  80. Ogihara Y., Ohsawa T. Molecular analysis of the complete set of length mutations found in the plastomes of Triticum-Aegilops species // Genome. 2002. V. 45. P. 956–962.
  81. Pathak G.N. Studies in the cytology of cereals // J. Genet. 1940. V. 39. P. 437–467.
  82. Petersen G., Seberg O., Yde M., Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum) // Mol. Phylogenet. Evol. 2006. V. 39. № 1. P. 70–82.
  83. Riley R., Unrau J., Chapman V. Evidence on the origin of the B genome of wheat // Heredity. 1958. V. 49. P. 91–98.
  84. Rodriguez S., Maestra B., Perera E. et al. Pairing affinities of the B- and G-genome chromosome of polyploid wheats with those of Aegilops speltoides // Genome. 2000. V. 43. P. 814–819.
  85. Sakamura T. Kurze mitteilung über die chromosomen-zahlen und die verwandtschaftsverhaltnisse der Triticum-arten // Bot. Mag. (Tokyo). 1918. V. 32. P. 150–153.
  86. Sarkar P., Stebbins G.L. Morphological evidence concerning the origin of the B genome in wheat // Am. J. Bot. 1956. V. 43. P. 297–304.
  87. Schaart J.G., Salentijn E.M.J., Goryunova S.V. et al. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii // Plant J. 2021. V. 106. № 1. P. 86–94.
  88. Schulz A. Die Geschichte der kultiverten Getreide // Halle. 1913. P. 134.
  89. Su Q., Liu L., Zhao M. et al. The complete chloroplast genomes of seventeen Aegilops tauschii: genome comparative analysis and phylogenetic inference // Peer J. 2020. V. 8. P. 1–19.
  90. Terachi T., Tsunewaki K. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. VIII. Mitochondrial RFLP analyses using cloned genes as probes // Mol. Biol. Evol. 1992. V. 9. P. 917–931.
  91. Tsunewaki K. Plasmon analysis in the Triticum–Aegilops complex // Breed. Sci. 2009. V. 59. № 5. P. 455–470.
  92. Upadhya M.D., Swaminathan M.S. Genome analysis in Triticum zhukovskyi, a new hexaploid wheat // Chromosoma. 1963. V. 14. P. 589–600.
  93. van Campenhout C., Stappen J., Volckaert G. The specific isolation of complete 5S rDNA units from chromosome 1A of hexaploid, tetraploid, and diploid wheat species using PCR with head-to-head oriented primers // Genome. 2001. V. 44. P. 529–538.
  94. Waines J.G., Barnhart D. Biosystematic research in Aegilops and Triticum // Hereditas. 1992. V. 116. P. 207–212.
  95. Wang G.Z., Miyashita N.T., Tsunewaki K. Plasmon analyses of Triticum (wheat) and Aegilops: PCR single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs // PNAS USA. 1997. V. 94. P. 14570–14577.
  96. Wang J., Luo M.-C., Chen Z. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat // New Phytol. 2013. V. 198. № 3. P. 925–937.
  97. Wang L., Zhu T., Rodriguez J.C. et al. Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation // G3 (Bethesda). 2021. V. 11. № 12. P. 1–13.
  98. Watanabe N. Breeding opportunities for early, free-threshing and semidwarf Triticum monococcum L. // Euphytica. 2017. V. 213. P. 201.
  99. Xu Y., Sun F-Y., Ji C. et al. Nucleotide diversity patterns at the DREB1 transcriptional factor gene in the genome donor species of wheat (Triticum aestivum L) // PLoS One. 2019. V. 14. № 5. P. 1–16.
  100. Yamane K., Kawahara T. Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences // Am. J. Bot. 2005. V. 92. P. 1887–1898.
  101. Yu G., Matny O., Champouret N. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62 // Nat. Commun. 2022. V. 13. № 1. P. 1607.
  102. Zimin A.V., Puiu D., Hall R. et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum // GigaScience. 2017. V. 6. P. 1–7.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (56KB)

Copyright (c) 2023 А.Р. Кулуев, Б.Р. Кулуев, А.В. Чемерис

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies