Changes of Organism Life Important System State by Long-COVID-19

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Long-COVID-19 is a long disease, its duration can be more than four weeks. The analysis was made of epidemiology and of symptoms of Long-COVID-19. The pathogenesis of disease is discased, particularly the inflammation processes, immune system state (cytokine storm), hemostasis system (mechanism of the thrombosis development) and oxidative stress. The disturbances of the central nervous system, including the brain organic diseases and the cognitive functions disturbances, plays a great role by the Long-COVID-19. Besides the damages of heart-vessel system and of breath organs are described. The treatment and rehabilitation of the patients with Long-COVID-19 is not only medical, but also great social problem.

Sobre autores

B. Kuznik

Chita State Medical Academy; Academy of Health Innovation Clinic

Email: ni_chalisova@mail.ru
Russia, Chita; Russia, Chita

K. Shapovalov

Chita State Medical Academy

Email: ni_chalisova@mail.ru
Russia, Chita

N. Chalisova

Pavlov Institute of Physiology, Russian Academy of Sciences; St. Petersburg Institute of Bioregulation and Gerontology

Autor responsável pela correspondência
Email: ni_chalisova@mail.ru
Russia, St. Petersburg; Russia, St. Petersburg

Bibliografia

  1. Кузник Б.И., Хавинсон В.Х., Линькова Н.С. COVID-19: влияние на иммунитет, систему гемостаза и возможные пути коррекции // Успехи физиол. наук. 2020а. Т. 51. № 4. С. 51–63.
  2. Кузник Б.И., Хавинсон В.Х., Лукьянов С.А. и др. Влияние тоцилизумаба и тималина на системное воспаление у больных COVID-19 // Врач. 2020б. Т. 31. № 11. С. 87–96.
  3. Любавина Н.А., Сальцев С.Г., Меньков Н.В. и др. Иммунологические подходы к лечению новой коронавирусной инфекции (обзор) // Соврем. технол. мед. 2021. Т. 13. № 3. С. 81–101.
  4. Симарова И.Б., Переходов С.Н., Буланов А.Ю. Геморрагические осложнения новой коронавирусной инфекции: актуальная клиническая проблема // Тромб, гемост. реол. 2021. № 3. С. 12–15.
  5. Слуханчук Е.В., Бицадзе В.О., Хизроева Ю.К. и др. COVID-19 и тромботическая микроангиопатия // Акуш. гинекол. репрод. 2021. Т. 15. № 6. С. 639–657.
  6. Adeloye D., Elneima O., Daines L. et al. The long-term sequelae of COVID-19: an international consensus on research priorities for patients with pre-existing and new-onset airways disease // Lancet Respir. Med. 2021. V. 9. № 12. P. 1467–1478.
  7. Agyeman A.A., Chin K.L., Landersdorfer C.B. et al. Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis // Mayo Clin. Proc. 2020. V. 95. № 8. P. 1621–1631.
  8. Alberti P., Beretta S., Piatti M. et al. Guillain–Barre syndrome related to COVID-19 infection // Neurol. Neuroimmunol. Neuroinflamm. 2020. V. 7. № 4. P. e741.
  9. Bohmwald K., Gálvez N.M.S., Ríos M., Kalergis A.M. Neurologic alterations due to respiratory virus infections // Front. Cell. Neurosci. 2018. V. 12. P. 386.
  10. Bornstein S.R., Voit-Bak K., Donate T. et al. Chronic post-COVID-19 syndrome and chronic fatigue syndrome: is there a role for extracorporeal apheresis // Mol. Psychiatry. 2021. V. 27. № 1. P. 34–37.
  11. Calabrese F., Pezzuto F., Fortarezza F. et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of european pulmonary pathologists // Virchows Arch. 2020. V. 477. № 3. P. 359–372.
  12. Callard F., Perego E. How and why patients made Long Covid // Soc. Sci. Med. 2021. V. 268. P. 113426.
  13. Carvalho-Schneider C., Laurent E., Lemaignen A. et al. Follow-up of adults with noncritical COVID-19 two months after symptoms onset // Clin. Microbiol. Infect. 2021. V. 27. P. 258–263.
  14. Chen C., Amelia A., Ashdown G.W. et al. Risk surveillance and mitigation: autoantibodies as triggers and inhibitors of severe reactions to SARS-CoV-2 infection // Mol. Med. 2021. V. 27. № 1. P. 160–167.
  15. Chippa V., Aleem A., Anjum F. Post acute coronavirus (COVID-19) syndrome. Treasure Island: StatPearls Publ., 2022.
  16. Crook H., Raza S., Nowell J. et al. Long covid-mechanisms, risk factors, and management // BMJ. 2021. V. 374. P. n1648.
  17. Dani M., Dirksen A., Taraborrelli P. et al. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies // Clin. Med. 2021. V. 21. № 1. P. e63–e67.
  18. DosSantos M.F., Devalle S., Aran V. et al. Neuromechanisms of SARS-CoV-2: a review // Front. Neuroanat. 2020. V. 14. P. 37–42.
  19. Espinosa Rodríguez P., Martínez Aguilar A., Ripoll Muñoz M.P., Rodríguez Navarro M.Á. Long COVID: is it really myalgic encephalomyelitis? Bibliographic review and considerations // Semergen. 2022. V. 48. № 1. P. 63–69.
  20. Estiri H., Strasser Z.H., Brat G.A. et al. Evolving phenotypes of non-hospitalized patients that indicate long COVID // BMC Med. 2021. V. 19. P. 249.
  21. Frija-Masson J., Debray M.P., Gilbert M. et al. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection // Eur. Respir. J. 2020. V. 56. № 2. P. 2001754.
  22. Garg S., Garg M., Prabhakar N. et al. Unraveling the mystery of Covid-19 cytokine storm: from skin to organ systems // Dermatol. Ther. 2020. V. 33. № 6. P. 1385–1389.
  23. Garg M., Maralakunte M., Garg S. et al. The conundrum of “Long-COVID-19”: a narrative review // Int. J. Gen. Med. 2021. V. 14. P. 2491–2506.
  24. Goh K.J., Choong M.C., Cheong E.H. et al. Rapid progression to acute respiratory distress syndrome: review of current understanding of critical illness from COVID-19 infection // Ann. Acad. Med. Singap. 2020. V. 49. № 3. P. 108–118.
  25. Graham E.L., Clark J.R., Orban Z.S. et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers” // Ann. Clin. Transl. Neurol. 2021. V. 8. № 5. P. 1073–1085.
  26. Hadjadj J., Yatim N., Barnabei L. et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients // Science. 2020. V. 369. № 6504. P. 718–724.
  27. Haidar M.A., Jourdi H., Haj Hassan Z. et al. Neurological and neuropsychological changes associated with SARS-CoV-2 infection: new observations new mechanisms // Neuroscientist. 2021. V. 2021. Iss. 1073858420984106.
  28. Haidar M.A., Shakkour Z., Reslan M.A. et al. SARS-CoV-2 involvement in central nervous system tissue damage // Neural Regen. Res. 2022. V. 17. № 6. P. 1228–1239.
  29. Huang N., Pérez P., Kato T. et al. SARS-CoV-2 infection of the oral cavity and saliva // Nat. Med. 2021. V. 27. P. 892–903.
  30. Ilonzo N., Kumar S., Borazan N. et al. Endotheliitis in coronavirus disease-19-positive patients after extremity amputation for acute thrombotic events // Ann. Vasc. Surg. 2021. V. 72. P. 209–215.
  31. Kananeh M.F., Thomas T., Sharma K. et al. Arterial and venous strokes in the setting of COVID-19 // J. Clin. Neurosci. 2020. V. 79. P. 60–66.
  32. Kanberg N., Ashton N.J., Andersson L.M. et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19 // Neurology. 2020. V. 95. P. e1754–e1759.
  33. Khavinson V., Linkova N., Dyatlova A. et al. Peptides: prospects for use in the treatment of COVID-19 // Molecules. 2020. V. 25. № 19. P. 4389–4393.
  34. Khavinson V.Kh., Kuznik B.I., Trofimova S.V. et al. Results and prospects of using activator of hematopoietic stem cell differentiation in complex therapy for patients with COVID-19 // Stem Cell Rev. Rep. 2021. V. 17. № 1. P. 285–290.
  35. Komaroff A.L., Lipkin W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrom // Trends Mol. Med. 2021. V. 27. № 9. P. 895–906.
  36. Lingel H., Meltendorf S., Billing U. et al. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals // J. Autoimmun. 2021. V. 122. P. 102682.
  37. Logue J.K., Franko N.M., McCulloch D.J. et al. Sequelae in adults at 6 months after COVID-19 infection // JAMA Netw. Open. 2021. V. 4. № 2. P. e210830.
  38. López Castro J. Post-COVID-19 syndrome (PC19S): chronic reactive endotheliitis and disseminated vascular disease // Acta Med. Port. 2020. V. 33. № 12. P. 859–864.
  39. Lu J.Q., Lu J.Y., Wang W. et al. Clinical predictors of acute cardiac injury and normalization of troponin after hospital discharge from COVID-19 // EBioMedicine. 2022. V. 76. P. 103821.
  40. Lucas C., Wong P., Klein J. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19 // Nature. 2020. V. 584. P. 463–469.
  41. Mahase E. Covid-19: what do we know about “long covid”? // BMJ. 2020. V. 370. P. m2815.
  42. Mahdi A., Collado A., Tengbom J. et al. Erythrocytes induce vascular dysfunction in COVID-19 // JACC Basic Transl. Sci. 2022. V. 7. № 3. P. 193–204.
  43. Mantovani E., Mariotto S., Gabbiani D. et al. Chronic fatigue syndrome: an emerging sequela in COVID-19 survivors? // Neurovirol. 2021. V. 27. № 4. P. 631–637.
  44. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan China // JAMA Neurol. 2020. V. 77. P. 683–690.
  45. Maracaja L., Khanna A.K., Royster R. et al. Selective lobe ventilation and a novel platform for pulmonary drug delivery // J. Cardiothorac. Vasc. Anesth. 2021. V. 35. № 11. P. 3416–3422.
  46. Meier I.B., Vieira Ligo Teixeira C., Tarnanas I. et al. Neurological and mental health consequences of COVID-19: potential implications for well-being and labour force // Brain Commun. 2021. V. 3. № 1. P. fcab012.
  47. Meinhardt J., Radke J., Dittmayer C. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat. Neurosci. 2021. V. 24. P. 168–175.
  48. Moriguchi T., Harii N., Goto J. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2 // Int. J. Infect. Dis. 2020. V. 94. P. 55–58.
  49. Morris G., Bortolasci C.C., Puri B.K. et al. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? // Cytokine. 2021. V. 144. P. 155593.
  50. Nassau D.E., Best J.C., Kresch E. et al. Impact of the SARS-CoV-2 virus on male reproductive health // BJU Int. 2022. V. 129. № 2. P. 143–150.
  51. Nguyen N.N., Hoang V.T., Lagier J.C. et al. Long-term persistence of olfactory and gustatory disorders in COVID-19 patients // Clin. Microbiol. Infect. 2021. V. 27. № 6. P. 931–932.
  52. Okada Y., Yoshimura K., Toya S., Tsuchimochi M. Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients // Jpn. Dent. Sci. Rev. 2021. V. 57. P. 111–122.
  53. Pazuhina E., Angreeva M., Spiridonova E. et al. Prevalence and risk factors of post-COVID-19 condition in adults and children at 6 and 12 months after hospital discharge: a prospective // BMC Med. 2022. V. 20. P. 244.
  54. Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19 // Nat. Rev. Neurol. 2020. V. 16. № 11. P. 636–644.
  55. Pierce J.D., Shen Q., Cintron S.A. et al. Post-COVID-19 syndrome // Nurs. Res. 2022. V. 71. № 2. P. 164–174.
  56. Premraj L., Kannapadi N.V., Briggs J. et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: a meta-analysis // J. Neurol. Sci. 2022. V. 434. P. 120162.
  57. Rubin R. As their numbers grow, COVID-19 “long haulers” stump experts // JAMA. 2020. V. 324. P. 1381–1383.
  58. Scordo K.A., Richmond M.M., Munro N. Post-COVID-19 syndrome: theoretical basis, identification, and management // AACN Adv. Crit. Care. 2021. V. 32. № 2. P. 188–194.
  59. Shah W., Hillman T., Playford E.D., Hishmeh L. Managing the long term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline // BMJ. 2021. V. 372. P. n136.
  60. Shi H., Zuo Y., Navaz S. et al. Endothelial cell-activating antibodies in COVID-19 // Arth. Rheumatol. 2022. V. 74. P. 1132–1138.
  61. Silva Andrade B., Siqueira S., Soares W.R.A. et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms // Viruses. 2021. V. 13. № 4. P. 700–710.
  62. Singer-Cornelius T., Cornelius J., Oberle M. et al. Objective gustatory and olfactory dysfunction in COVID-19 patients: a prospective cross-sectional study // Eur. Arch. Otorhinolaryngol. 2021. V. 278. № 9. P. 3325–3332.
  63. Strauss S.B., Lantos J.E., Heier L.A. et al. Olfactory bulb signal abnormality in patients with COVID-19 who present with neurologic symptoms // AJNR. 2020. V. 41. P. 1882–1887.
  64. Su Y., Yuan D., Chen D.G. et al. Multiple early factors anticipate post-acute COVID-19 sequelae // Cell. 2022. V. 185. № 5. P. 881–895.
  65. Takahashi T., Ota M., Numata Y. et al. Relationships between the fear of COVID-19 scale and regional brain atrophy in mild cognitive impairment // Acta Neuropsychiatrica. 2022. V. 34. P. 153–162.
  66. Tian T., Wu J., Chen T. et al. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations // JCI Insight. 2022. V. 7. № 4. P. e155827.
  67. Torres-Castro R., Vasconcello-Castillo L., Alsina-Restoy X. et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis // Pulmonology. 2021. V. 27. № 4. P. 328–337.
  68. Tran V.-T., Riveros C., Clepier B. et al. Development and validation of the Long coronavirus disease (COVID) symptom and impact tools, a set of patient-reported instruments constructed from patients’ lived experience // Clin. Infect. Dis. 2022. V. 74. P. 278–287.
  69. Tremblay M.-E., Madore C., Bordeleau M. et al. Neuropathobiology of COVID-19: the role for glia // Front. Cell. Neurosci. 2020. V. 14. P. 592214.
  70. Verity R., Okell L.C., Dorigatti I. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis // Lancet Infect. Dis. 2020. V. 20. № 6. P. 669–677.
  71. Wallukat G., Hohberger B., Wenzel K. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms // J. Transl. Autoimmun. 2021. V. 4. P. 100100.
  72. Wang F., Kream R.M., Stefano G.B. Long-term respiratory and neurological sequelae of COVID-19// Med. Sci. Monit. 2020a. V. 26. P. e928996.
  73. Wang F., Nie J., Wang H. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia // J. Infect. Dis. 2020b. V. 221. № 11. P. 1762–1769.
  74. Wong A.W., Shah A.S., Johnston J.C. et al. Patient-reported outcome measures after COVID-19: a prospective cohort study // Eur. Respir. J. 2020. V. 56. № 5. P. 2003276.
  75. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19 // Nat. Med. 2022. V. 28. № 3. P. 583–590.
  76. Xiong Q., Xu M., Li J. et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study // Clin. Microbiol. Infect. 2021. V. 27. P. 89–95.
  77. Yap J.K.Y., Moriyama M., Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19 // J. Immunol. 2020. V. 205. № 2. P. 307–312.
  78. Ye G., Pan Z., Pan Y. et al. Clinical characteristics of severe acute respiratory syndrome coronavirus 2 reactivation // J. Infect. 2020. V. 80. № 5. P. e14–e17.
  79. Yelin D., Margalit I., Yahav D. et al. Long COVID-19 – it’s not over until? // Clin. Microbiol. Infect. 2021. V. 27. № 4. P. 506–508.
  80. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients // J. Psychiatr. Res. 2020. V. 129. P. 98–102.
  81. Zuo Y., Estes S.K., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19 // Sci. Transl. Med. 2020. V. 12. № 570. P. eabd3876.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (449KB)

Declaração de direitos autorais © Б.И. Кузник, К.Г. Шаповалов, Н.И. Чалисова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies