Changes in Active and Non-Excitable Adjacent Nerve Membranes after Electroactivation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has long been recognized that parabiosis and paranecrosis are two close cytological theories that have demonstrated the intermediate state of the cell between life and death from various scientific positions. However, they have not previously been shown by anyone at the same time on the same object. This became the goal of our electron microscopic work. Active and non-excitable membranes of nerve and glial cells under pessimal inhibition have been studied. The main sign of paranecrosis was considered denaturation and aggregation of membrane protein, manifested in a decrease in its degree of dispersion and dehydration. Parabiosis was caused by the pessimal frequency of electroactivation of the sympathetic ganglion of white rats. As a result, the axolemma turned into a thick membrane, reinforced with fringe and the appearance of desmosomes. There were protein sticking from the inside of the neurolemma in the form of pyramids, which, by retracting, curved the membrane. In its bends, pyramid-like loose aggregates of intermembrane protein were formed from the outer sides of the glial and axolemm membranes, which, merging, turned into a kind of hourglass and septa. The septa were localized in the intercellular slits of axons and glia and often crossed both membranes. In chemical synapses, the shell of dendrites turned out to be denser than that of presynaptic axons. The process of protein aggregation and retraction locally narrows the intercellular axo-axonal and axo-glial cleft. Gap and tight junctions (GJ and TJ) are formed. So, for the first time we got a way of their experimental education. All reactive changes that occur de novo are considered as one reversible process of denaturation and aggregation of the mass of intrinsic and near-membrane proteins developed under the influence of frequency electrical stimulation. The pulse of the drug is restored within minutes. It is assumed that the revealed changes, paranecrosis, are a morphological manifestation of parabiosis.

About the authors

O. S. Sotnikov

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: ossotnikov@mail.ru
Russia, St. Petersburg

References

  1. Введенский Н.Е. Полное собрание сочинений. Т. 3. Л.: Изд-во ЛГУ им. А.А. Жданова, 1952. С. 84.
  2. Гайер Г. Электронная гистохимия. М.: Мир, 1974. 488 с.
  3. Миронов А.А., Комиссарчик Я.Ю., Миронов В.А. Методы электронной микроскопии в биологии и медицине. СПб: Наука, 1994. 400 с.
  4. Насонов Д.Н., Александров В.Я. Реакция живого вещества на внешние воздействия. М.–Л.: Изд-во АН СССР, 1940. 252 с.
  5. Сотников О.С. Объединенная нейронно-ретикулярная теория. СПб: Наука, 2019. 239 с.
  6. Сотников О.С., Ревенко С.В. Физиология перехватов Ранвье живых миелиновых волокон // Биол. мембраны. 2022. Т. 39. № 4. С. 1–14.
  7. Финкельштейн А.В., Птицын О.Б. Физика белка. М.: КДУ, 2012. 456 с.
  8. Ходоров Б.И. Общая физиология возбудимых мембран. Руководство по физиологии. М.: Наука, 1975. 408 с.
  9. Calvert J.S., Grahn P.J., Strommen J.A. et al. Electrophysiological guidance of epidural electrode array implantation over the human lumbosacral spinal cord to enable motor function after chronic paralysis // J. Neurotrauma. 2019. V. 36. № 9. P. 1451–1460. https://doi.org/10.1089/neu.2018.5921
  10. Conese M., Carbone A., Beccia E., Angiolillo A. The fountain of youth: a tale of parabiosis, stem cells, and rejuvenation // Open Med. (Wars.). 2017. V. 12. P. 376–383. https://doi.org/10.1515/med-2017-0053
  11. Cosentino K., García-Sáez A.J. MIM through MOM: the awakening of Bax and Bak pores // EMBO J. 2018. V. 37. № 17. P. e100340. https://doi.org/10.15252/embj.2018100340
  12. Faivre-Sarrailh C. Molecular organization and function of vertebrate septate-like junctions // Biochim. Biophys. Acta Biomembr. 2020. V. 1862. № 5. P. 183211. https://doi.org/10.1016/j.bbamem.2020.183211
  13. Fisher K.M., Jillani N.E., Oluoch G.O., Baker S.N. Blocking central pathways in the primate motor system using high-frequency sinusoidal current // J. Neurophysiol. 2015. V. 113. № 5. P. 1670–1680. https://doi.org/10.1152/jn.00347.2014
  14. Gerasimenko Y., Preston C., Zhong H. et al. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat // J. Neurophysiol. 2019. V. 122. № 2. P. 585–600. https://doi.org/10.1152/jn.00810.2018
  15. Guerra A.J., Carruthers V.B. Structural features of apicomplexan pore-forming proteins and their roles in parasite cell traversal and egress // Toxins (Basel). 2017. V. 9. № 9. P. 265. https://doi.org/toxins9090265
  16. Herbet G., Lafargue G., Bonnetblanc F. et al. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion // Cortex. 2013. V. 49. № 10. P. 2711–2727. https://doi.org/10.1016/j.cortex.2013.08.003
  17. Janjua T.A.M., Nielsen T.G.N.D.S., Andreis F.R. et al. The effect of peripheral high-frequency electrical stimulation on the primary somatosensory cortex in pigs // IBRO Neurosci. Rep. 2021 V. 11. P. 112–118. https://doi.org/10.1016/j.ibneur.2021.08.004
  18. Jiang F., Yin H., Qin X. Fastigial nucleus electrostimulation reduces the expression of repulsive guidance molecule, improves axonal growth following focal cerebral ischemia // Neurochem. Res. 2012. V. 7. № 9. P. 1906–1914. https://doi.org/10.1007/s11064-012-0809-y
  19. Kagan B.L. Membrane pores in the pathogenesis of neurodegenerative disease // Prog. Mol. Biol. Transl. Sci. 2012. V. 107. P. 295–325. https://doi.org/10.1016/B978-0-12-385883-2.00001-1
  20. Laube G., Röper J., Pitt J.C. et al. Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux // Brain Res. Mol. Brain Res. 1996. V. 42. № 1. P. 51–61. https://doi.org/10.1016/s0169-328x(96)00120-9
  21. Ling D., Luo J., Wang M. et al. Kilohertz high-frequency alternating current blocks nerve conduction without causing nerve damage in rats // Ann. Transl. Med. 2019. V. 7. № 22. P. 661. https://doi.org/10.21037/atm.2019.10.36
  22. Luo Y., Huang L., Liao P., Jiang R. Contribution of neuronal and glial two-pore-domain potassium channels in health and neurological disorders // Neur. Plast. 2021. V. 2021. P. 8643129. https://doi.org/10.1155/2021/8643129
  23. Manso C., Querol L., Lleixà C. et al. Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo // J. Clin. Invest. 2019. V. 129. № 6. P. 2222–2236. https://doi.org/10.1172/JCI124694
  24. Marchioretto M., Podobnik M., Dalla Serra M., Anderluh G. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins // Biophys. Chem. 2013. V. 182. P. 64–70. https://doi.org/10.1016/j.bpc.2013.06.015
  25. Mardani P., Oryan S., Sarihi A. et al. ERK activation is required for the antiepileptogenic effect of low frequency electrical stimulation in kindled rats // Brain Res. Bull. 2018. V. 14. P. 132–139. https://doi.org/10.1016/j.brainresbull.2018.04.013
  26. Masson M.A. De l’induction d’un courant sur lui-même // Ann. de Chimie et de Physique. 1837. V. 66. P. 5–36.
  27. Nekhendzy V., Davies M.F., Lemmens H.J., Maze M. The role of the craniospinal nerves in mediating the antinociceptive effect of transcranial electrostimulation in the rat // Anesth. Analg. 2006. V. 102. № 6. P. 1775–1780. https://doi.org/10.1213/01.ANE.0000219588.25375.36
  28. Ogawa Y., Rasband M.N. The functional organization and assembly of the axon initial segment // Curr. Opin. Neurobiol. 2008. V. 18. № 3. P. 307–313. https://doi.org/10.1016/j.conb.2008.08.008
  29. Omersa N., Podobnik M., Anderluh G. Inhibition of pore-forming proteins // Toxins (Basel). 2019. V. 11. № 9. P. 545. https://doi.org/10.3390/toxins11090545
  30. Rath M., Vette A.H., Ramasubramaniam S. et al. Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury // J. Neurotrauma. 2018. V. 35. № 21. P. 2540–2553. https://doi.org/10.1089/neu.2017.5584
  31. Rice C., De O., Alhadyian H. et al. Expanding the junction: new insights into non-occluding roles for septate junction proteins during development // J. Dev. Biol. 2021. V. 9. № 1. P. 11. https://doi.org/10.3390/jdb9010011
  32. Schucht P., Moritz-Gasser S., Herbet G. et al. Subcortical electrostimulation to identify network subserving motor control // Hum. Brain Mapp. 2013. V. 34. № 11. P. 3023–3030. https://doi.org/10.1002/hbm.22122
  33. Vallat J.M., Yuki N., Sekiguchi K. et al. Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-Neurofascin 155 antibodies // Neuromus. Disord. 2017. V. 27. № 3. P. 290–293. https://doi.org/10.1016/j.nmd.2016.10.008
  34. Xu Z., Wang Y., Chen B. et al. Entorhinal principal neurons mediate brain-stimulation treatments for epilepsy // EBioMedicine. 2016. V. 14. P. 148–160. https://doi.org/10.1016/j.ebiom.2016.11.027

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (670KB)
3.

Download (1MB)
4.

Download (1MB)
5.

Download (787KB)
6.

Download (882KB)
7.

Download (794KB)
8.

Download (897KB)

Copyright (c) 2023 О.С. Сотников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies