Controlled ignition of low-carbon gas-engine fuels based on natural gas and hydrogen: process kinetics

Cover Page

Cite item

Full Text

Abstract

The potential wide use of environmentally friendly low-carbon gas fuel based on natural gas, hydrogen, their mixtures, and syngas in power generation and transport requires detailed information about the kinetics of ignition of these gases at temperatures below 1000 K, at which fuel ignition occurs in internal combustionengines (ICEs) and gas turbines. The same temperature range is also important for monitoring the storage and transportation conditions of these fuels. Although there are quite a few studies addressing the ignition of classical gas fuels such as methane or hydrogen, there is an obvious lack of works dealing with realnatural gases and gas mixtures. Furthermore, even for methane and hydrogen, data on the ignition at high temperatures (T > 1000 K), which have been mainly gained by the shock-wave method for highly diluted mixtures, are at variance with the kinetic estimations for real conditions of operating with them or their usein ICEs. Considering the ignition characteristics at T < 1000 K is also important for syngas, the largest-scale base product of gas chemistry and the main industrial source of hydrogen. The pronounced discrepancies between the extrapolation of the results obtained for high-temperature ignition to lower temperatures and the results of kinetic modelling of these processes make it necessary to analyze their causes. This review addresses new experimental results on the ignition of methane–alkane and methane–hydrogenmixtures (real gas fuels) and kinetic modelling of these processes, which reveal significant changes in the ignition behaviour at T < 1000 K. These changes in the ignition process upon the variation of the temperature, pressure, and composition of the mixture are related to significant changes in the methane and hydrogen oxidation mechanisms in this temperature range. They are mainly caused by changes in the kinetics and, hence, the role of peroxide compounds and radicals in methane and hydrogen oxidation following temperature and pressure variation. The established features bring about the question of the adequacy of the existing criteria for assessing the knock resistance of gas engine fuels, primarily those containing hydrogen, when they are used in ICEs, and for assessing their explosiveness and measures taken for their safe handling. The review considers the possible methods for improving the knock characteristics of natural and associated gases to meet the requirements of power equipment manufacturers.The bibliography includes 128 references.

About the authors

Vladimir Sergeevich Arutyunov

V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS; Lomonosov Moscow State University; Laboratoire de Physique des Lasers, CNRS, Universite Paris 13

Email: arutyunov@center.chph.ras.ru
ORCID iD: 0000-0003-0339-0297
Doctor of chemical sciences, Professor

Artem Vladimirovich Arutyunov

V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS; Lomonosov Moscow State University

ORCID iD: 0000-0003-2980-0186

Andrey Aleksandrovich Belyaev

V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS

Email: belyaevIHF@yandex.ru
ORCID iD: 0000-0001-6715-1776

K. J. Troshin

V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS

ORCID iD: 0000-0003-2205-5742
Doctor of physico-mathematical sciences, no status

References

  1. BP Statistical Review of World Energy, 2022, 71 edition https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (Last access 06.03.2023)
  2. The Paris Agreement https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (Last access 13.02.2023)
  3. The Intergovernmental Panel on Climate Change. Sixth assessment report https://www.ipcc.ch/ (Last access 13.02.2023)
  4. V.S.Arutyunov, G.V.Lisichkin. Russ. Chem. Rev., 86, 777 (2017)
  5. V.S.Arutyunov. Neft’ XXI. Mify i Real’nost’Al’ternativnoi Energetiki. (Oil XXI. Myths and Reality of Alternative Energy). (Moscow: Eksmo, 2016). 208 pp
  6. V.S.Arutyunov. Gorenie i Plasmokhimiya, 19, 245 (2021)
  7. V.S.Arutyunov. Petroleum Chemistry, 62, 583 (2022)
  8. V.A.Kirilov, N.A.Kuzin, V.V.Kireenkov, Yu.I.Amosov, V.A.Burtsev, V.K.Emel’yanov, V.A.Sobyanin, V.N.Parmon. Teor. Osnovy Khim. Tekhnologii, 45, 139 (2011)
  9. V.A.Kirilov, A.B.Shigarov, N.A.Kuzin, V.V.Kireenkov, Yu.I.Amosov, A.V.Samoilov, V.A.Burtsev. Teor. Osnovy Khim. Tekhnologii, 47, 503 (2013)
  10. C.K.Westbrook, M.Sjöberg, N.P.Cernansky. Combust. Flame, 195, 50 (2018)
  11. A.Burcat, K.Scheller, A.Lifshitz. Combust. Flame, 16, 29 (1971)
  12. N.Lamoureux, C.-E.Paillard, V.Vaslier Shock Waves, 11, 309 (2002)
  13. D.Healy, H.J.Curran, S.Dooley, J.Simmie, D.Kalitan, E.Petersen, G.Borque. Combust. Flame, 155, 441 (2008)
  14. S.S.Goldsborough, S.Hochgreb, G.Vanhove, M.S.Wooldridge, H.J.Curran, C.-J.Sung. Prog. Energy and Combust. Sci., 63, 1 (2017); https://doi. org/10.1016/j.pecs.2017.05.002
  15. K.Ya.Troshin, A.V.Nikitin, A.A.Borisov, V.S.Arutyunov. Combustion, Explosion, and Shock Waves, 52, 386 (2016)
  16. K.Ya.Troshin, A.V.Nikitin, A.A.Belyaev, A.V.Arutyunov, A.A.Kiryushin, V.S.Arutyunov. Combustion, Explosion, and Shock Waves, 55, 526 (2019)
  17. A.A.Belyaev, A.V.Nikitin, P.D.Toktaliev, P.A.Vlasov, A.V.Ozerskiy, A.S.Dmitruk, A.V.Arutyunov, V.S.Arutyunov. Combustion and Explosion, 11, 19 (2018)
  18. P.Zhang, I.G.Zsély, V.Samu, T.Nagy, T.Turányi. Energy Fuels, 35, 12329 (2021)
  19. Mechanism Downloads. NUI Galway; https://www.universityofgalway.ie/combustionchemistrycentre/mechanismdownloads/ (Last access 18.06.2023)
  20. V.Arutyunov. Direct Methane to Methanol: Foundations and Prospects of the Process. (Amsterdam, The Netherlands: Elsevier B.V., 2014)
  21. V.S.Arutyunov, R.N.Magomedov, A.Yu.Proshina, L.N.Strekova. Chem. Eng. J., 238, 9 (2014); http://dx.doi.org/10.1016/j.cej.2013.10.009
  22. G.Freeman, A.Lefebvre. Combust. Flame, 58, 153 (1984)
  23. N.Lamoureux, C.-E.Paillard. Shock Waves, 13, 57 (2003)
  24. M.M.Holton, P.Gokulakrishnan, M.S.Klassen, R.J.Roby, G.S.Jackson. J. Eng. Gas Turbines and Power, 132, 091502 (2010); https://doi. org/10.1115/1.4000590
  25. D.J.Beerer, V.G.McDonell. Proc. Combust. Inst., 33, 301 (2011); http://dx.doi.org/10.1016/j.proci.2010.05.015
  26. G.P.Smith, D.M.Golden, M.Frenklach, N.W.Moriarty, B.Eiteneer, M.Goldenberg, C.T.Bowman, R.K.Hanson, S.Song, W.C.Gardiner Jr., V.V.Lissianski, Z.Qin. GRI-Mech; http://combustion.berkeley.edu/gri-mech/ (Last access 13.02.2023)
  27. M.Baigmohammadi, V.Patel, S.Martinez, S.Panigrahy, A.K.Ramalingam, U.Burke, K.P.Somers, K.A.Heufer, A.Pekalski, H.J.Curran. Energy Fuels, 34, 3755 (2020)
  28. V.Arutyunov, K.Troshin, A.Nikitin, A.Belyaev, A.Arutyunov, A.Kiryushin, L.Strekova. Chem. Eng. J., 381, 122706 (2020)
  29. E.B.Khalil, G.A.Karim. J. Eng. Gas Turbines and Power, 124, 404 (2002)
  30. J.Huang, W.K.Bushe. Comb. Flame, 144, 74 (2006)
  31. L.J.Spadaccini, M.B.Colket III. Prog. Energy Combust. Sci., 20, 431 (1994)
  32. Cao Su, D.Wang, T.Wang. Chem. Eng. Sci, 65, 2608 (2010)
  33. H.Wei, J.Qi, L.Zhou, W.Zhao, G.Shu. Energy Fuels, 32, 6264 (2018)
  34. L.S.Thorsen, M.S.T.Jensen, M.S.Pullich, J.M.Christensen, H.Hashemi, P.Glarborg Energy Fuels, 37 (4), 3048 (2023)
  35. A.T. Balaban, L.B.Kier, N.Joshi. MATCH Commun. Math. Co. 28, 13 (1992); https://match.pmf.kg.ac.rs/content28.htm (Last access 11.06.2023)
  36. K.Ya.Troshin, A.A.Belyaev, A.V.Arutyunov, A.V.Nikitin, V.S.Arutyunov. Combustion and Explosion, 13 (1), 18 (2020)
  37. K.Ya.Troshin, A.A.Belyaev, A.V.Arutyunov, G.A.Shubin, V.S.Arutyunov. Combustion and Explosion, 14 (1), 3 (2021)
  38. A.V.Drakon, A.V.Eremin, V.V.Azatyan. Dokl. Phys. Cem., 484, 312 (2019) https://doi.org/10.31857/S0869-56524843312-315
  39. A.V.Arutyunov, K.Ya.Troshin, A.V.Nikitin, A.A.Belyaev, V.S.Arutyunov. IOP Conf. Series: J. Physics: Conf. Series, 1141, 012153 (2018)
  40. N.N.Semenov. On Some Problems of Chemical Kinetics and Reactivity. (Elsevier, 1958)
  41. P.Gray, J.F.Griffiths, S.K.Scott. Proc. R. Soc. Lond. A, 397, 21 (1985); http://rspa.royalsocietypublishing.org/
  42. Carbon Monoxide – Hydrogen Combustion Characteristics in Severe Accident Containment Conditions Final report. (Nuclear energy agency committee on the safety of nuclear installations, 2000); https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r2000-10.pdf (Last access 13.02.2023)
  43. S.M.Walton, X.He, B.T.Zigler, M.S.Wooldridge. Proc. Combust. Inst., 31, 3147 (2007)
  44. H.C.Lee, L.Y.Jiang, A.A.Mohamad. Int. J. Hydrog. En., 39, 1105 (2014); http://dx.doi.org/10.1016/j.ijhydene.2013.10.068
  45. A.V.Arutyunov, A.R.Akhun’yanov, G.A.Shubin, A.A.Belyaev, P.A.Vlasov, V.N.Smirnov, K.Ya.Troshin, V.S.Arutyunov Combustion and Explosion, 16 (2), 3 (2023)
  46. K.Ya.Troshin, A.A.Belyaev, A.V.Arutyunov, V.S.Arutyunov. Combustion, Explosion, and Shock Waves, 2023 (in the press)
  47. V.S.Arutyunov, A.A,Belyaev, K.Ya.Troshin, A.V.Arutyunov, A.A.Tsarenko, A.V.Nikitin. Oil and Gas Chemistry, 3 – 4, 5 (2018); https://doi. org/10.24411/2310-8266-2019-10401
  48. V.S.Arutyunov, K.Ya.Troshin, A.A.Belyaev, A.V.Arutyunov, A.V.Nikitin, L.N.Strekova. Gorenie i Plazmokhimiya, 18, 61 (2020)
  49. V.Arutyunov, A.Belyaev, A.Arutyunov, K.Troshin, A.Nikitin. Processes, 10, 2177 (2022)
  50. S.Gersen, H.Darmeveil, H.Levinsky. Combustion and Flame, 159, 3472 (2012)
  51. M.G.Bryukov, A.S.Palankoeva, A.A.Belyaev, V.S.Arutyunov. Kinetics and Catalysis, 62, 703 (2021)
  52. W.Tsang, R.F.J.Hampson. Phys. Chem. Ref. Data, 15, 1087 (1986)
  53. V.S.Arutyunov. Academia Letters, Article 3692 (2021)
  54. Hydrogen Storage Tech Team Roadmap. July 2017; https://www.energy.gov/sites/prod/files/2017/08/f36/hstt_roadmap_July2017.pdf (Last access 13.02.2023)
  55. L.M.Kustov, A.N.Kalenchuk, V.I.Bogdan. Russ. Chem. Rev., 89, 897 (2020)
  56. I.A.Makaryan, I.V.Sedov, E.A.Salgansky, A.V.Arutyunov, V.S.Arutyunov. Energies, 15, 2265 (2022)
  57. D.Mahajan, K.Tan, T.Venkatesh, P.Kileti, C.R.Clayton. Energies, 15, 3582 (2022)
  58. G.A.Karim, I.Wierzba, Y.AL-Alousi. Int. J. Hydrogen Energy, 21, 625 (1996)
  59. S.Verhelst, T.Wallner. Prog. Energy Combust. Sci., 35, 490 (2009)
  60. S.O.Akansu, M.Bayrak. Int. J. Hydrogen Energy, 36, 9260 (2011)
  61. P.M.Diéguez, J.C.Urroz, D.Sáinz, L.M.Gandía. Appl. Energy, 113, 1068 (2014)
  62. M.Kamil, M.M.Rahman. Appl. Energy, 158, 556 (2015)
  63. M.Klell, H.Eichlseder, M.Sartory. Int. J. Hydrogen Energy, 37, 11531 (2012)
  64. F.Moreno, M.Muñoz, J.Arroyo, O.Magén, C.Monné, I.Suelves. Int. J. Hydrogen Energy, 37, 11495 (2012)
  65. Y.Zhanga, J.Wu, S.Ishizuka. Int. J. Hydrogen Energy, 34, 519 (2009)
  66. A.Delorme, A.Rousseau, P.Sharer, S.Pagerit, T.Wallner. Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045. SAE Paper No. 2009-01-1008. Evolution 2009, 1, 1008; https://saemobilus.sae.org/content/2009-01-1008/ (Last access 13.06.2023)
  67. FreedomCAR and Vehicle Technologies Multi-Year Program Plan 2006–2011, U.S.Department of Energy; https://www1.eere.energy.gov/vehiclesandfuels/pdfs/mypp/1_prog_over.pdf (Last access 13.06.2023).
  68. B.Lewis, G.Elbe. Combustion, Flames and Explosions of Gases. (Academic Press: Orlando, FL, USA, 1987)
  69. Z.Huang, Y.Zhang, K.Zeng, B.Liu, Q.Wang, D.Jiang. Combust. Flame, 146, 302 (2006)
  70. J.Huang, W.K.Bushe, P.G.Hill, S.R.Munshi. Int. J. Chem. Kinet., 38, 221 (2006)
  71. J.Herzler, C.Naumann. Proc. Combust. Inst., 32, 213 (2009)
  72. A.A.Konnov, R.Riemeijer, L.de Goey. Fuel, 89, 1392 (2010)
  73. S.P.Medvedev, B.E.Gelfand, S.V.Khomik, G.L.Agafonov. J. Eng. Phys. Thermophys., 83, 1170 (2010)
  74. Y.Zhang, Z.Huang, L.Wei, X.Zhang, C.K.Law. Combust. Flame, 159, 918 (2012)
  75. Y.Zhang, X.Jiang, L.Wei, J.Zhang, C.Tang, Z.Huang. Int. J.Hydrogen Energy, 37, 19168 (2012)
  76. S.Drost, S.Eckart, C.Yu, R.Schießl, H.Krause, U.Maas. Energies, 16, 2621 (2023)
  77. S.Gersen, N.B.Anikin, A.V.Mokhov, H.B.Levinsky. Int. J. Hydrogen Energy, 33, 1957 (2008)
  78. T.G.Sholte, P.B.Vaags. Combustion and Flame, 3, 511 (1959)
  79. B.E.Milton, J.C.Keck. Combustion and Flame, 58, 13 (1984)
  80. G.Yu, C.K.Law, C.K.Wu. Combustion and Flame, 63, 339 (1986)
  81. F.Halter, C.Chauveau, N.Djebaili-Chaumeix, I.Gokalp. Proc. Combust. Inst., 30, 201 (2005)
  82. R.T.E.Hermanns Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Proefschrift. (Technische Universiteit Eindhoken, 2007). ISBN: 978-90-386-1127-3; http://alexandria.tue.nl/extra2/200711972.pdf
  83. E.Hu, Z.Huang, J.He, Ch.Jin, J.Zheng. Int. J. Hydrogen Energy, 34, 4876 (2009)
  84. P.Dirrenberger, H.Le Gall, R.Bounaceur, O.Herbinet, P.-A.Glaude, A.Konnov, F.Battin-Leclerc. Energy and Fuels, 25, 3875 (2011)
  85. V.Moccia, J.D’Alessio. Energies, 6, 97 (2013)
  86. K.Ya.Troshin, A.A.Borisov, A.N.Rakhmetov, V.S.Arutyunov, G.G.Politenkova. Russ. J. Phys. Chem. B, 7, 290 (2013)
  87. N.Donohoe, A.Heufer, W.K.Metcalfe, H.J.Curran, M.L.Davis, O.Mathieu, D.Plichta, A.Morones, E.L.Petersen, F.Guthe. Combustion and Flame, 161, 1432 (2014)
  88. E.C.Okafor, A.Hayakawa, Yu.Nagano, T.Kitagawa. Int. J. Hydrogen Energy, 39, 2409 (2014)
  89. A.V.Arutyunov, A.A.Belyaev, I.N.Inovenkov, V.S.Arutyunov. Combustion and Flame, 12 (4), 4 (2019)
  90. J.de Vries, E.L.Petersen. Proc. Combust. Inst., 31, 3163 (2007)
  91. J.Herzler, C.Naumann. Proc. Combust. Inst., 32, 213 (2009)
  92. S.M.Sarathy, C.K.Westbrook, W.J.Pitz, M.Mehl, C.Togbe, P.Dagaut, H.Wang, M.Oehlschlaeger, U.NIemann, K.Seshadri, P.S.Veloo, C.Ji, F.Egolfopoulos, T.Lu. Comprehensive Chemical Kinetic Modeling of the Oxidation of C8 and Larger n-Alkanes and 2-Methylalkanes. (Lawrence Livermore National Laboratory, 2011). LLNL-JRNL-474853
  93. E.L.Petersen. J.M.Hall, S.D.Smith, J.de Vries, A.R.Amadio, M.W.Crofton. J. Eng. Gas Turbines Power, 129, 937 (2007)
  94. S.M.Walton, X.He, B.T.Zigler, M.S.Wooldridge. Proc. Combust. Inst., 31, 3147 (2007)
  95. H.C.Lee, L.Y.Jiang, A.A.Mohamad. IInt. J. Hydrogen Energy, 39, 1105 (2014); https://dx.doi.org/10.1016/j.ijhydene.2013.10.068
  96. V.S.Arutyunov, I.A.Golubeva, O.L.Eliseev, F.G.Zhagfarov. Tekhnologiya Pererabotki Uglevodorodnykh Gazov. (Technology for the Processing of Hydrocarbon Gases. Textbook for Universities). (Moscow: Yurait, 2020), 723cс. ISBN 978-5-534-12398-2
  97. Carbon Monoxide – Hydrogen Combustion Characteristics in Severe Accident Containment Conditions. Final report; https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r2000-10.pdf (Last access 13.06.2023).
  98. G.A.Karim, I.Wierzba, S.Boon. Int. J. Hydrogen Energy, 10, 117 (1985)
  99. D.M.Kalitan. A Study of Syngas Oxidation at High Pressures And Low Temperatures. 2007. Electronic Theses and Dissertations, 2004–2019. 3219; https://stars.library.ucf.edu/etd/3219
  100. D.M.Kalitan, J.D.Mertens, M.W.Crofton, E.L.J.Petersen. Propuls. Power, 23, 1291 (2007)
  101. F.L.Dryer, M.Chaos. Combust. Flame, 152, 293 (2007)
  102. G.Mittal, C.-J.Sung, R.A.Yetter. Int. J. Chem. Kinet., 38, 516 (2006)
  103. D.E.Cavaliere, M.De Ioannon, P.Sabia, M.Allegorico, T.Marchione, M.Sirignano, A.A.D’Anna. Combus. Sci. Technol., 182, 692 (2010)
  104. M.Reyes, F.V.Tinaut, B.Giménez, A.Camaño. Energy Fuels, 35, 3497 (2021)
  105. V.N.Smirnov, G.A.Shubin, A.V.Arutyunov, P.A.Vlasov, A.A.Zakharov, V.S.Arutyunov. Russ. J. Phys. Chem. B, 16, 1092 (2022); https://doi. org/10.1134/S1990793122060112
  106. ANSYS Academic Research CFD.CHEMKIN-Pro 15112 , Reaction Design: San Diego, CK-TUT-10112-1112-UG-1, 2011
  107. D.W.Walker, L.H.Diehl, W.A.Strauss, R.Edse. Investigation of the Ignition Properties of Flowing Combustible Gas Mixtures. Ohio State University, Technical Report AFAPL-TR-69-82, August, 1969
  108. M.E.Neer. AIAA J., 13, 924 (1975).
  109. V.S.Arutyunov, A.A.Belyaev, A.V.Arutyunov, K.Ya.Trishin, A.A.Tsarenko, A.V.Nikitin. NefteGazoKhimiya, 3 – 4, 5 (2019); https://doi. org/10.24411/2310-8266-2019-10401
  110. W.T.Peschke, L.J.Spadaccini. Determination of Autoignition and Flame Velocity Characteristics of Coal Gases Having Medium Heating Values. EPRI AP-4291 Research Project 2357-1, Final Report, November, 1985
  111. D.He, W.Yan. Chin. J. Chem. Eng., 25, 79 (2017); http://dx.doi.org/10.1016/j.cjche.2016.06.003
  112. A.R.Akhun’yanov, A.V.Arutyunov, P.A.Vlasov, V.N.Smirnov, V.S.Arutyunov. Kinet. Catal., 64, 153 (2023)
  113. S.Wang, Z.Wang, A.M.Elbaz, Y.He, C.Chen, Y.Zhu, W.L.Roberts. Energy Fuels, 35, 18733 (2021)
  114. K.Kim, H.Kim, B.Kim, K.Lee. Oil & Gas Science and Technology – Rev. IFP, 64, 199 (2009)
  115. M.Leiker, K.Christoph, M.Rankl, W.Cantellieri, U.Pfeifer (AVL, Graz, Austria), Evaluation of Anti-Knocking Property of Gaseous Fuels by Means of Methane Number and its Practical Application to Gas Engines. ASME-72-DGP-4; 1972; https://jglobal.jst.go.jp/en/detail?JGLOBAL_ ID=201602009196798751
  116. G.Brecq, J.Bellettre, M.Tazerout, T.Muller. Appl. Thermal Eng., 23, 1359 (2003)
  117. M.Malenshek, D.B.Olsen. Fuel, 88, 650 (2009)
  118. Natural Gas as Fuel. Fuel Quality Calculator. URL; http://www.cumminswestport.com/fuel-Quality-calculator (Last access 14.06.2023)
  119. Wärtsilä Calculator. Internet resource: https://www.wartsila.com/products/marine-oil-gas/gas-solutions/methane-number-calculator (Last access 14.06.2023)
  120. E.L.Petersen, M.Röhrig, D.F.Davidson, R.K.Hanson, C.T.Bowman. Proc. Combust. Inst., 26, 799 (1996)
  121. A.A.Attar, G.A.Karim. J. Eng. Gas Turbines and Power, 125, 500 (2003)
  122. V.M.van Essen, S.Gersen, G.H.J.van Dijk, H.B.Levinsky. Next Generation Knock Characterization. Conference: International Gas Union Research Conference 2014. Copenhagen. Internet resource: https://www.researchgate.net/publication/283070331_Next_generation_knock_characterization (Last access 14.06.2023)
  123. V.S.Arutyunov, V.I.Savchenko, I.V.Sedov, A.V.Nikitin, R.N.Magomedov, A.Yu.Proshina. Russ. Chem. Rev., 86, 47 (2017)
  124. V.I.Savchenko, V.S.Arutyunov, I.G.Fokin, A.V.Nikitin, I.V.Sedov. Petroleum Chem., 57, 236 (2017)
  125. P.Middha, D.Engel, O.R.Hansen. Int. J. Hydrogen Energy, 36, 2628 (2011)
  126. C.Wang, L.Zhao, J.Qu, Y.Xiao, J.Deng, C.-M.Shu. Energy Fuels, 37, 5653 (2023)
  127. X.Yang, T.Wang, Y.Zhang, H.Zhang, Y.Wu, J.Zhang. Energy, 239, 122248 (2022)
  128. Hydrogen Pipeline Systems. Doc 121/14. European Industrial Gases Association AISBL.; https://www.eiga.eu/publications/eiga-documents/doc-12114hydrogen-pipeline-systems/ (Last access 14.06.2023)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies