Methods of quantum logic in ion frequency standards, quantum computers, and modern spectroscopy
- Autores: Khabarova K.Y.1,2, Zalivako I.V.1,2, Kolachevsky N.N.1,2
-
Afiliações:
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences
- Russian Quantum Center
- Edição: Volume 192, Nº 12 (2022)
- Páginas: 1305-1312
- Seção: On the 100th annversary of the birth of N.G. Basov
- URL: https://journals.rcsi.science/0042-1294/article/view/256700
- DOI: https://doi.org/10.3367/UFNr.2022.10.039270
- ID: 256700
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Ksenia Khabarova
P. N. Lebedev Physical Institute of the Russian Academy of Sciences; Russian Quantum CenterCandidate of physico-mathematical sciences, no status
Ilia Zalivako
P. N. Lebedev Physical Institute of the Russian Academy of Sciences; Russian Quantum Center
Email: zalivako.ilya@yandex.ru
Researcher ID: M-7635-2015
Nikolay Kolachevsky
P. N. Lebedev Physical Institute of the Russian Academy of Sciences; Russian Quantum Center
Email: kolachevsky@lebedev.ru
Scopus Author ID: 6602852750
Doctor of physico-mathematical sciences
Bibliografia
- Saffman M., “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges”, J. Phys. B, 49 (2016), 202001
- Bruzewicz C. D. et al., “Trapped-ion quantum computing: Progress and challenges”, Appl. Phys. Rev., 6 (2019), 021314
- Flamini F., Spagnolo N., Sciarrino F., “Photonic quantum information processing: a review”, Rep. Prog. Phys., 82 (2019), 016001
- Wolfowicz G. et al., “Quantum guidelines for solid-state spin defects”, Nat. Rev. Mater., 6 (2021), 906
- Linke N. M. et al., “Experimental comparison of two quantum computing architectures”, Proc. Natl. Acad. Sci. USA, 114 (2017), 3305
- Kiktenko E. O. et al., “Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits”, Phys. Lett. A, 379 (2015), 1409
- Georgescu I., “Trapped ion quantum computing turns 25”, Nat. Rev. Phys., 2 (2020), 278
- Degen C. L., Reinhard F., Cappellaro P., “Quantum sensing”, Rev. Mod. Phys., 89 (2017), 035002
- Pirandola S. et al., “Advances in quantum cryptography”, Adv. Opt. Photon., 12 (2020), 1012
- Yin J. et al., “Entanglement-based secure quantum cryptography over $1,120$ kilometres”, Nature, 582 (2020), 501
- Beloy K. et al., “Frequency ratio measurements at 18-digit accuracy using an optical clock network”, Nature, 591 (2021), 564
- Arute F. et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505
- Басов Н. Г., Прохоров А. М., “Молекулярный генератор и усилитель”, УФН, 57 (1955), 485
- Basov N. G., Semiconductor lasers Nobel Lecture, December 11, 1964, The Nobel Foundation
- Басов Н. Г., Летохов В. С., “Оптические стандарты частоты”, УФН, 96 (1968), 585
- Басов Н. Г., Крохин О. Н., “Условия разогрева плазмы излучением оптического генератора”, ЖЭТФ, 46 (1964), 171
- Riehle F., Frequency Standards: Basics and Applications, Wiley-VCH, Weinheim, 2004
- Meschede D., Walther H., Müller G., “One-atom maser”, Phys. Rev. Lett., 54 (1985), 551
- Particle control in a quantum world, The Nobel Prize in Physics 2012. Press release pub The Nobel Foundation
- Schawlow A. L., Townes C. H., “Infrared and optical masers”, Phys. Rev., 112 (1958), 1940
- Летохов В. С., Чеботаев В. П., Принципы нелинейной лазерной спектроскопии, Наука, М., 1975
- Letokhov V., Laser Control of Atoms and Molecules, Oxford Univ. Press, Oxford, 2007
- Alnis J. et al., “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry—Perot cavities”, Phys. Rev. A, 77 (2008), 053809
- Kessler T. et al., “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity”, Nat. Photon., 6 (2012), 687
- Bothwell T. et al., “Resolving the gravitational redshift across a millimetre-scale atomic sample”, Nature, 602 (2022), 420
- Levine H. et al., “High-fidelity control and entanglement of Rydberg-atom qubits”, Phys. Rev. Lett., 121 (2018), 123603
- Kolachevsky N. et al., “Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen”, Opt. Lett., 36 (2011), 4299
- Hald J., Ruseva V., “Efficient suppression of diode-laser phase noise by optical filtering”, J. Opt. Soc. Am. B, 22 (2005), 2338
- Paul W., Raether M., “Das elektrische Massenfilter”, Z. Phys., 140 (1995), 262
- Wineland D. J., Drullinger R. E., Walls F. L., “Radiation-pressure cooling of bound resonant absorbers”, Phys. Rev. Lett., 40 (1978), 1639
- Diedrich F. et al., “Observation of a phase transition of stored laser-cooled ions”, Phys. Rev. Lett., 59 (1987), 2931
- Cirac J. I., Zoller P., “Quantum computations with cold trapped ions”, Phys. Rev. Lett., 74 (1995), 4091
- Sorensen A., Molmer K., “Quantum computation with ions in thermal motion”, Phys. Rev. Lett., 82 (1999), 1971
- Wineland D. J., Dehmelt H., Bull. Am. Phys. Soc., 20 (1975), 637
- Monroe C. et al., “Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy”, Phys. Rev. Lett., 75 (1995), 4011
- Larson D. J. et al., “Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma”, Phys. Rev. Lett., 57 (1986), 70
- Brewer S. M. et al., “$ ^{27}$Al$ ^+$ quantum-logic clock with a systematic uncertainty below $10^{-18}$”, Phys. Rev. Lett., 123 (2019), 033201
- Pino J. M. et al., “Demonstration of the trapped-ion quantum CCD computer architecture”, Nature, 592 (2021), 209
- Kozlov M. G. et al., “Highly charged ions: Optical clocks and applications in fundamental physics”, Rev. Mod. Phys., 90 (2018), 45005
- Parez P. et al., “The GBAR antimatter gravity experiment”, Hyperfine Interact., 233 (2015), 21
- Khabarova K. et al., “Toward a new generation of compact transportable Yb$ ^+$ optical clocks”, Symmetry, 14 (2022), 2213
- Burt E. A. et al., “Demonstration of a trapped-ion atomic clock in space”, Nature, 595 (2021), 43
- Lacroûte C. et al., “Compact Yb$ ^+$ optical atomic clock project: design principle and current status”, J. Phys. Conf. Ser., 723 (2016), 012025
- Herschbach N. et al., “Linear Paul trap design for an optical clock with Coulomb crystals”, Appl. Phys. B, 107 (2012), 891
- Keller J. et al., Phys. Rev. A, 99 (2019), 013405
- Dehmelt H. G., Bull. Am. Phys. Soc., 18 (1973), 1521
- Diddams S. A. et al., “An optical clock based on a single trapped $ ^{199}$Hg$ ^+$ ion”, Science, 24 (1999), 881
- Barwood G. P. et al., “Agreement between two $ ^{88}$Sr$ ^+$ optical clocks to 4 parts in $10^{17}$”, Phys. Rev. A, 89 (2014), 050501
- Rosenband T. et al., “Frequency ratio of Al$^+$ and Hg$^+$ single-ion optical clocks; metrology at the 17th decimal place”, Science, 319 (2008), 1808
- Huntemann N. et al., “High-accuracy optical clock based on the octupole transition in $ ^{171}$Yb$ ^+$”, Phys. Rev. Lett., 108 (2012), 090801
- Huang Y. et al., “Frequency comparison of two $ ^{40}$Ca$ ^+$ optical clocks with an uncertainty at the $10^{-17}$ level”, Phys. Rev. Lett., 116 (2016), 013001
- Chou C. W. et al., “Optical clocks and relativity”, Science, 329 (2010), 1630
- Fischer M. et al., “New limits on the drift of fundamental constants from laboratory measurements”, Phys. Rev. Lett., 92 (2004), 230802
- Lange R. et al., “Improved limits for violations of local position invariance from atomic clock comparisons”, Phys. Rev. Lett., 126 (2021), 11102
- Schmidt P. O. et al., “Spectroscopy using quantum logic”, Science, 309 (2005), 749
- Golovizin A. et al., “Inner-shell clock transition in atomic thulium with a small blackbody radiation shift”, Nat. Commun., 10 (2019), 1724
- Bergquist J. C., Itano W. M., Wineland D. J., “Recoilless optical absorption and Doppler sidebands of a single trapped ion”, Phys. Rev. A, 36 (1987), 428
- Chou C. W. et al., “Frequency comparison of two high-accuracy Al$^+$ optical clocks”, Phys. Rev. Lett., 104 (2010), 070802
- Micke P. et al., “Coherent laser spectroscopy of highly charged ions using quantum logic”, Nature, 578 (2020), 60
- King S. A. et al., “An optical atomic clock based on a highly charged ion”, Nature, 611 (2022), 43
- Herrmann M. et al., “Feasibility of coherent xuv spectroscopy on the $1S-2S$ transition in singly ionized helium”, Phys. Rev. A, 79 (2009), 052505
- Opticloc. BMBF project
- Cao J. et al., “A compact, transportable single-ion optical clock with $7.8times 10^{-17}$ systematic uncertainty”, Appl. Phys. B, 123 (2017), 112
- Hannig S. et al., “Towards a transportable aluminium ion quantum logic optical clock”, Rev. Sci. Instrum., 90 (2019), 53204
- Riehle F., “Optical clock networks”, Nat. Photon., 11 (2017), 25
- Rochat P. et al., “Atomic clocks and timing systems in global navigation satellite systems”, Proc. of the 2012 European Navigation Conf., 2012, 25
- Wang P. et al., “Single ion qubit with estimated coherence time exceeding one hour”, Nat. Commun., 12 (2021), 233
- DiVincenzo D. P., “The physical implementation of quantum computation”, Fortschr. Phys., 48 (2000), 771
- Zhang J. et al., “Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator”, Nature, 551 (2017), 601
- Turchette Q. A. et al., “Deterministic entanglement of two trapped ions”, Phys. Rev. Lett., 81 (1998), 3631
- Schmidt-Kaler F. et al., “Realization of the Cirac—Zoller controlled-NOT quantum gate”, Nature, 422 (2003), 408
- Wright K. et al., “Benchmarking an 11-qubit quantum computer”, Nat. Commun., 10 (2019), 5464
- Ryan-Anderson C. et al., Implementing fault-tolerant entangling gates on the five-qubit code and the color code
- Cross A. W. et al., “Validating quantum computers using randomized model circuits”, Phys. Rev. A, 100 (2019), 032328
- Семериков И. А. и др., “Многочастичные потери в линейной квадрупольной ловушке Пауля”, Квантовая электроника, 46 (2016), 935
- Семериков И. А. и др., “Линейная ловушка Пауля для задач квантовой логики”, Краткие сообщения по физике ФИАН, 47 (2020), 385
- Заливако И. В. и др., “Экспериментальное исследование оптического кубита на квадрупольном переходе 435 нм в ионе $ ^{171}$Yb$ ^+$”, Письма в ЖЭТФ, 114 (2021), 53
- Семенин Н. В. и др., “Оптимизация достоверности считывания квантового состояния оптического кубита в ионе иттербия $ ^{171}$Yb$ ^+$”, Письма в ЖЭТФ, 114 (2021), 553
- Семенин Н. В. и др., “Определение скорости нагрева и температуры ионных цепочек в линейной ловушке Пауля по дефазировке осцилляций Раби”, Письма в ЖЭТФ, 116 (2022), 74
Arquivos suplementares
