Solving scientific problems of nuclear power engineering as a source of ‘green’ energy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

A way to prevent adverse global climatic change is to essentially alter the strategy of power generation, which is one of the major sources of greenhouse gases. A task of paramount economic importance is to ensure a balance among various energy sources, depending on the social economical features of a particular region. Major industrial regions cannot develop without highly concentrated energy sources, among which nuclear„ energy is actually the only ‘green’ one. However, progress in the nuclear power generation industry and an increase in its share in the total power generation both in Russia and worldwide depend on solving challenging scientific and technological problems related to safe processing of spent nuclear fuel and radioactive wastes. An urgent task is to develop a next-generation nuclear power industry based on a combination of thermal- and fast-neutron reactors, recycling of fissile nuclides, deep fractioning of radioactive wastes with subsequent ‘afterburning’ of long-lived radionuclides, and minimizing deep disposal in geological formations.

Авторлар туралы

Stepan Kalmykov

Presidium of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: stepan@radio.chem.msu.ru
ORCID iD: 0000-0002-2396-4561
Scopus Author ID: 7004328359
ResearcherId: Q-9757-2017
Doctor of chemical sciences, Professor

Әдебиет тізімі

  1. Капица П. Л., “Глобальные проблемы и энергия”, УФН, 122 (1977), 327
  2. Завойский E. К., Кадомцев Б. Б., Окунь Л. Б., Смирнов Б. М., “Человек и окружающая среда - проблемы будущего”, УФН, 122 (1977), 337
  3. Фортов В. Е., Макаров А. А., “Направления инновационного развития энергетики мира и России”, УФН, 179 (2009), 1337
  4. Coal and Electricity, World Coal Association, London, UK, 2015
  5. The costs of decarbonisation: system costs with high shares of nuclear and renewables, NEA No. 7299, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Paris, 2019
  6. Du X., Jin X., Zucker N., Kennedy R., Urpelainen J., “Transboundary air pollution from coal-fired power generation”, J. Environmental Management, 270 (2020), 110862
  7. McBride J. P., Moore R. E., Witherspoon J. P., Blanco R. E., Radiological Impact of Airborne Effluents of Coal-Fired and Nuclear Power Plants, ORNL-5315, Oak Ridge National Laboratory, Oak Ridge, TN, 1977
  8. Purevsuren B., Kim J., Sci. Technol. Nucl. Install., 2021 (2021), 6685385
  9. Utsunomiya S., Jensen K. A., Keeler G. J., Ewing R. C., Environ. Sci. Technol., 36 (2002), 4943
  10. Myasoedov B. F., Kalmykov S. N., “Nuclear power industry and the environment”, Mendeleev Commun., 25:5 (2015), 319
  11. Ceyhan M., Lee J. S., Proc. of the Intern. Conf. on Management of Spent Fuel from Nuclear Power Reactors, IAEA (Vienna, Austria, 19-22 June, 2006 (IAEA-CN-144)), International Atomic Energy Agency, OECD Nuclear Energy Agency, Vienna, 2006
  12. Ceyhan M., Lee J. S., Implications of Partitioning and Transmutation in Radioactive Waste Management, Technical Reports Series No. 435, International Atomic Energy Agency, Vienna, 2004
  13. Khapersaya A. V., Kruykov O. V., Ivanov K. V., “Spent nuclear fuel management in Russia: Status and future development”, Management of Spent Fuel from Nuclear Power Reactors: Learning from the Past, Enabling the Future, Proc. of the Intern. Conf. (Vienna, Austria, 24–28 June 2019 (IAEA-CN-272/53)), International Atomic Energy Agency, Vienna, 2020, Paper ID #25, 93–98
  14. Fedorov Yu. S., Baryshnikov M. V., Bibichev B. A. et al., “Multiple recycle of REMIX-fuel dased on reprocessed uranium and plutonium mixture in thermal reactors”, Proc. of GLOBAL 2013: Intern. Nuclear Fuel Cycle Conf., Nuclear Energy at a Crossroads (Salt Lake City, UT, September 29 - October 3, 2013)
  15. Sheremetyev A., Koulupaev D., “Experience and prospects of spent nuclear fuel reprocessing at Mayak. Management of spent fuel. From nuclear power reactors. Learning from the past, enabling the future”, Management of Spent Fuel from Nuclear Power Reactors: Learning from the Past, Enabling the Future, Proc. of the Intern. Conf. (Vienna, Austria, 24-28 June 2019 (IAEA-CN-272/53)), International Atomic Energy Agency, Vienna, 2020, Paper ID #53, 161–166
  16. Пономарев-Степной Н. Н., “Двухкомпонентная ядерная энергетическая система с замкнутым ядерным топливным циклом на основе БН и ВВЭР”, Атомная энергия, 120:4 (2016), 183
  17. Адамов Е. О., Джалавян А. В., Лопаткин А. В. и др., “Концептуальные положения стратегии развития ядерной энергетики России в перспективе до 2100 г.”, Атомная энергия, 112:6 (2012), 319
  18. Адамов Е. О. и др., Белая книга ядерной энергетики. Замкнутый ЯТЦ с быстрыми реакторами, Под общ. ред. Е. О. Адамова, НИКИЭТ, М., 2020
  19. Stewart J. E., Eccleston G. W., Ensslin N., Cremers T. L., Foster L. A., Menlove H. O., Rinard P. M., Neutron-Based Measurements for Nondestructive Assay of Minor Actinides Produced in Nuclear Power Reactors, LA-UR-96-3690, Los Alamos National Lab., Los Alamos, NM, 1996
  20. Пономарeв Л. И., “Я.Б. Зельдович и ядерная энергетика”, УФН, 184 (2014), 227

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).