Coordinate space modification of Fock's theory. Harmonic tensors in the quantum Coulomb problem
- Authors: Efimov S.P.1
-
Affiliations:
- Bauman Moscow State Technical University
- Issue: Vol 192, No 9 (2022)
- Pages: 1019-1034
- Section: Methodological notes
- URL: https://journals.rcsi.science/0042-1294/article/view/256673
- DOI: https://doi.org/10.3367/UFNr.2021.04.038966
- ID: 256673
Cite item
Full Text
Abstract
We consider Fock's fundamental theory of the hydrogen atom in momentum space, which allows a realization of the previously predicted rotation group of a three-dimensional (3D) sphere in four-dimensional (4D) space. We then modify Fock's theory and abandon the momentum-space description. To transform and simplify the theory, we use invariant tensor methods of electrostatics in 3D and 4D spaces. We find a coordinate 4D space where the Schr$\ddot o$dinger equation becomes the 4D Laplace equation. The transition from harmonic 4D polynomials to the original 3D physical space is algebraic and involves derivatives with respect to a coordinate that is interpreted as time. We obtain a differential equation for eigenfunctions in the momentum space and find its solutions. A concise calculation of the quadratic Stark effect is given. The Schwinger resolvent is derived by the method of harmonic polynomials. Ladder operators are also considered.
About the authors
Sergei P. Efimov
Bauman Moscow State Technical University
Email: serg.efimo2012@yandex.ru
ORCID iD: 0000-0002-1828-3577
Scopus Author ID: 57196838086
Candidate of physico-mathematical sciences, Associate professor
References
- Ландау Л. Д., Лифшиц Е. М., Квантовая механика: нерелятивистская теория, Наука, М., 1974
- Bethe H. A., Salpeter E. E., Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin, 1957
- Базь А. И., Зельдович Я. Б., Переломов А. М., Рассеяние, реакции и распады в нерелятивисткой квантовой механике, Наука, М., 1971
- Basdevant J.-L., Dalibard J., The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, Springer, Berlin, 2000
- Аллилуев С. П., ЖЭТФ, 33 (1957), 200
- Переломов А. М., Попов В. С., ЖЭТФ, 50 (1966), 179
- Bander M., Itzykson C., Rev. Mod. Phys., 38 (1966), 330
- Hulthen L., Z. Phys., 86 (1933), 21
- Фок В. А., Начала квантовой механики, Кубуч, Л., 1932
- Fock V., Z. Phys., 98 (1935), 145
- Fock V. A., Selected Works: Quantum Mechanics and Quantum Field Theory, Taylor and Francis, New York, 2004
- Stereographic projection. Wikipedia
- Casselman B., “Feature Column”, Stereographic Projection, American Mathematical Society, 2014
- Poisson S. D., Memoir. l'Acad. Sci. Paris, 5 (1821–1822), 247
- Whittaker E. T., A History of the Theories of Aether and Electricity, v. 1, The Classical Theories, T. Nelson, London, 1951
- Thomson W., Tait P. G., Treatise on Natural Philosophy, Pt. 2, The Univ. Press, Cambridge, 1912
- Stratton J. A., Electromagnetic Theory, McGraw-Hill Book Co., New York, 1941
- Maxwell J. C., A Treatise on Electricity and Magnetism, v. 2, Clarendon, Oxford, 1892
- Hobson E. W., The Theory of Spherical and Ellipsoidal Harmonics, Ch. 4, The Univ. Press, Cambridge, 1931
- Rose M. E., Multipole Fields, Wiley, New York, 1955
- Raab R. E., de Lange O. L., Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, Clarendon Press, Oxford, 2005
- Jackson J. D., Classical Electrodynamics, Wiley, New York, 1962
- Ландау Л. Д., Лифшиц Е. М., Теория поля, Наука, М., 1973
- Тамм И. Е., Основы теории электричества, Наука, М., 1976
- Ефимов С. П., Муратов Р. З., ДАН СССР, 241 (1978), 1315
- Ефимов С. П., ТМФ, 39 (1979), 219
- Муратов Р. З., Мультиполи и поля эллипсоида, Изд. дом МИСиС, М., 2015
- Ефимов С. П., Муратов Р. З., Астрон. журн., 67 (1990), 302
- Ефимов С. П., Муратов Р. З., Астрон. журн., 67 (1990), 314
- Муратов Р. З., УФН, 182 (2012), 987
- Медведев Б. В., Начала теоретической физики: Механика, теория поля, элементы квантовой механики, Наука, М., 1977
- Vilenkin N. Ja., Klimyk A. U., Representation of Lie Groups and Special Functions, Mathematics and Its Applications, 316, Springer, Dordrecht, 1995
- Желобенко Д. П., Компактные группы Ли и их представления, Наука, М., 1970
- Wentzel G., Z. Phys., 38 (1926), 518
- Waller I., Z. Phys., 38 (1926), 635
- Epstein P. S., Phys. Rev., 28 (1926), 695
- Соловьев Е. А., ЖЭТФ, 85 (1983), 109
- Main J., Schwacke M., Wunner G., Phys. Rev. A, 57 (1998), 1149
- Podolsky B., Pauling L., Phys. Rev., 34 (1929), 109
- Ballentine L. E., Quantum Mechanics: A Modern Development, World Scientific Publ., Singapore, 2015
- Flügge S., Practical Quantum Mechanics, v. 1, Springer-Verlag, Berlin, 1971
- Holstein B. R., Am. J. Phys., 63 (1995), 710
- Edmonds A. R., Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, 1974
- Glauber R. J., “Optical coherence and photon statistics”, Optique et electronique Quantiques. Quantum Optics and Electronics. Lectures, hes Houches, 1964 Session of the Summer School of Theoretical Physics, Univ. of Grenoble, C DeWitt, A. Blandin, C Cohen-Tannoudji, Gordon and Breach, New York, 1965, 63
- Глаубер Р. Д., УФН, 176 (2006), 1342
- Glauber R. J., Phys. Rev., 131 (1963), 2766
- Klauder J. R., J. Phys. A, 29 (1996), L293
- Klauder J. R., Skagerstam B., Coherent States. Applications in Physics and Mathematical Physics, World Scientific, Singapore, 1985
- Perelomov A., Generalized Coherent States and Their Applications, Springer-Verlag, Berlin, 2012
- Schwinger J., J. Math. Phys., 5 (1964), 1606
- Avery J., Hyperspherical Harmonics. Applications in Quantum Theory, Kluwer Acad. Publ., Dordrecht
- Hey J. D., Am. J. Phys., 61 (1993), 28
- Meremianin A. V., Rost J.-M., J. Phys A, 39 (2006), 12427
- Weniger E. J., Collect. Czech. Chem. Commun., 70 (2005), 1225
- Axler S., Bourdon P., Ramey W., Harmonic Function Theory, Springer-Verlag, New York, 1992
- Unsöld A., Naturwissenschaften, 15 (1927), 681
- Feynman R. P., The Theory of Fundamental Processes, W.A. Benjamin, New York, 1961
Supplementary files
