Limits of Eliashberg theory and bounds for superconducting transition temperature
- Autores: Sadovskii M.V.1
-
Afiliações:
- Institute of Electrophysics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 192, Nº 7 (2022)
- Páginas: 773-789
- Seção: Conferences and symposia
- URL: https://journals.rcsi.science/0042-1294/article/view/256659
- DOI: https://doi.org/10.3367/UFNr.2021.05.039007
- ID: 256659
Citar
Texto integral
Resumo
The discovery of record-breaking values of superconducting transition temperature $T_c$ in quite a number of hydrides under high pressure was an impressive demonstration of the capabilities of the electron–phonon mechanism of Cooper pairing. This led to increased interest in the foundations and limitations of the Eliashberg–McMillan theory as the main theory describing superconductivity in a system of electrons and phonons. Below, we shall consider both the elementary basics of this theory and a number of new results derived only recently. We shall discuss limitations on the value of the coupling constant related to lattice instability and a phase transition to another phase (CDW, bipolarons). Within the stable metallic phase, the effective pairing constant may acquire arbitrary values. We consider extensions beyond the traditional adiabatic approximation. It is shown that the Eliashberg–McMillan theory is also applicable in the strong antiadiabatic limit. The limit of very strong coupling, being the most relevant one for the physics of hydrides, is analyzed in detail. We also discuss the bounds for $T_c$ appearing in this limit.
Sobre autores
Mikhail Sadovskii
Institute of Electrophysics, Ural Branch, Russian Academy of Sciences
Email: sadovski@iep.uran.ru
Doctor of physico-mathematical sciences, Professor
Bibliografia
- Drozdov A. P. et al., Nature, 525 (2015), 73
- Еремец М. И., Дроздов А. П., УФН, 186 (2016), 1257
- Pickard C. J., Errea I., Eremets M. I., Annu. Rev. Condens. Matter Phys., 11 (2020), 57
- Flores-Livas J. A. et al., Phys. Rep., 856 (2020), 1
- Gor'kov L. P., Kresin V. Z., Rev. Mod. Phys., 90 (2018), 011001
- Liu H. et al., Proc. Natl. Acad. Sci. USA, 114 (2017), 6990
- Drozdov A. P. et al., Nature, 569 (2019), 528
- Somayazulu M. et al., Phys. Rev. Lett., 122 (2019), 027001
- Troyan I. A. et al., Adv. Mater., 33 (2021), 2006832
- Semenok D. V. et al., Mater. Today, 48 (2021), 18
- Snider E. et al., Phys. Rev. Lett., 126 (2021), 117003
- Snider E. et al., Nature, 586 (2020), 373
- Scalapino D. J., Superconductivity, Ed. R. D. Parks, M. Dekker, New York, 1969, 449
- Allen P. B., Mitrovic B., Solid State Physics, v. 37, H. Ehrenreich, F. Seitz, D. Turnbull, Academic Press, New York, 1983, 1
- Kresin V. Z., Morawitz H., Wolf S. A., Superconducting State. Mechanisms and Properties, Intern. Ser. of Monographs on Physics, 161, Oxford Univ. Press, Oxford, 2014
- Вонсовский С. В., Изюмов Ю. А., Курмаев Э. З., Сверхпроводимость переходных металлов, их сплавов и соединений, Наука, М., 1977
- Мигдал А. Б., ЖЭТФ, 34 (1958), 1438
- Абрикосов А. А., Горьков Л. П., Дзялошинский И. Е., Методы квантовой теории поля в статистической физике, Физматгиз, М., 1962
- Schrieffer J. R., Theory of Superconductivity, W.A. Benjamin, New York, 1964
- Садовский М. В., Диаграмматика: лекции по избранным задачам теории конденсированного состояния, 3-е изд., Ин-т компьют. исслед., М.-Ижевск, 2019
- Esterlis I. et al., Phys. Rev. B, 97 (2018), 140501
- Esterlis I., Kivelson S. A., Scalapino D. J., Phys. Rev. B, 99 (2019), 174516
- Chubukov A. V. et al., Ann. Physics, 417 (2020), 168190
- Садовский М. В., ЖЭТФ, 155 (2019), 527
- Садовский М. В., Письма в ЖЭТФ, 109 (2019), 165
- Sadovskii M. V., J. Supercond. Novel Magn., 33 (2020), 19
- Ikeda M. A., Ogasawara A., Sugihara M., Phys. Lett. A, 170 (1992), 319
- Садовский М. В., УФН, 186 (2016), 1035
- Gor'kov L. P., Phys. Rev. B, 93 (2016), 054517
- Gor'kov L. P., Phys. Rev. B, 93 (2016), 060507
- Gor'kov L. P., Proc. Natl. Acad. Sci. USA, 113 (2016), 4646
- Choi Y. W., Choi H. J., Phys. Rev. Lett., 127 (2021), 167001
- Fröhlich H., Proc. R. Soc. Lond. A, 215 (1952), 291
- Гинзбург В. Л., Киржниц Д. А. (Ред.), Проблема высокотемпературной сверхпроводимости, Гл. 3, Наука, М., 1977
- Vollhardt D., Correlated Electron Systems. Proc. of the 9th Jerusalem Winter School for Theoretical Physics, Ed. V. J. Emery, World Scientific, Singapore, 1993, 57
- Pruschke Th., Jarrell M., Freericks J. K., Adv. Phys., 44 (1995), 187
- Georges A. et al., Rev. Mod. Phys., 68 (1996), 13
- Vollhardt D., AIP Conf. Proc., 1297 (2010), 339
- Bauer J., Han J. E., Gunnarsson O., Phys. Rev. B, 84 (2011), 184531
- Meyer D., Hewson A. C., Bulla R., Phys. Rev. Lett., 89 (2002), 196401
- Schrodi F., Aperis A., Oppeneer P. M., Phys. Rev. B, 103 (2021), 064511
- Бровман Е. Г., Каган Ю. М., УФН, 112 (1974), 369
- Гейликман Б. Т., УФН, 115 (1975), 403
- Максимов Е. Г., Каракозов А. Е., УФН, 178 (2008), 561
- Allen P. B., Dynes R. C., Phys. Rev., 12 (1975), 905
- Kresin V. Z., Gutfreund H., Little W. A., Solid State Commun., 51 (1984), 339
- Cohen M. L., Anderson P. W., AIP Conf. Proc., 4 (1972), 17
- Dolgov O. V., Kirzhnits D. A., Maksimov E. G., Rev. Mod. Phys., 53 (1981), 81
- Hoffmann J. S. et al.
- Leavens C. R., Solid State Commun., 17 (1975), 1499
- Esterlis I., Kivelson S. A., Scalapino D. J., npj Quantum Mater., 3 (2018), 59
- Duan D. et al., Sci. Rep., 4 (2014), 6968
- Ge Y. et al., Mater. Today Phys., 15 (2020), 100330
- Shipley A. M. et al., Phys. Rev. B, 104 (2021), 054501
- Максимов Е. Г., УФН, 178 (2008), 175
Arquivos suplementares