The SMEFT formalism: the basis for finding deviations from the Standard Model
- Авторлар: Boos E.E.1
-
Мекемелер:
- Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
- Шығарылым: Том 192, № 7 (2022)
- Беттер: 697-721
- Бөлім: Reviews of topical problems
- URL: https://journals.rcsi.science/0042-1294/article/view/256655
- DOI: https://doi.org/10.3367/UFNr.2021.02.038916
- ID: 256655
Дәйексөз келтіру
Толық мәтін
Аннотация
The search for manifestations of physics beyond the Standard Model (SM) is one of the main directions of research at the LHC and future colliders under discussion. The effects caused by the new physics can consist in the direct detection of new particles if their masses are less than the characteristic energies available at colliders and their interactions with the SM particles are strong enough. But if the masses of new particles are too large, or the interactions with SM particles are too weak, then new particles cannot be detected directly. In this case, the new physics can lead to a modification of the interactions of SM particles, to subthreshold effects. We present„ the current status of an approach or formalism called the Standard Model Effective Field Theory (SMEFT), which allows„ us to describe and model deviations from the SM predictions in a theoretically consistent manner. The advantages of and serious problems with this approach are discussed.
Авторлар туралы
Edward Boos
Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
Email: boos@theory.sinp.msu.ru
Scopus Author ID: 35227010100
ResearcherId: D-9748-2012
Doctor of physico-mathematical sciences, Professor
Әдебиет тізімі
- Lee B. W., Quigg C., Thacker H. B., Phys. Rev. Lett., 38 (1977), 883
- Lee B. W., Quigg C., Thacker H. B., Phys. Rev. D, 16 (1977), 1519
- Chanowitz M. S., Preprint LBL-21973, Lawrence Berkeley Laboratory. Univ. of California, Berkeley, CA, 1986
- Dicus D. A., Mathur V. S., Phys. Rev. D, 7 (1973), 3111
- Aad G. et al. (ATLAS Collab.), Phys. Lett. B, 716 (2012), 1
- Chatrchyan S. et al. (CMS Collab.), Phys. Lett. B, 716 (2012), 30
- Beacham J. et al., J. Phys. G, 47 (2020), 010501
- Additional plots of the ATLAS Exotic physics group
- CMS Exotica Public Physics Results
- Weinberg S., Phys. Rev. Lett., 43 (1979), 1566
- Buchmüller W., Wyler D., Nucl. Phys. B, 268 (1986), 621
- Appelquist T., Carazzone J., Phys. Rev. D, 11 (1975), 2856
- Bogoliubow N. N., Parasiuk O. S., Acta Math., 97 (1957), 227
- Grzadkowski B. et al., J. High Energy Phys., 2010:10 (2010), 85
- Alonso R. et al., J. High Energy Phys., 2014:04 (2014), 159
- Gripaios B.
- Aguilar Saavedra J. A. et al.
- Boos E. et al., Int. J. Mod. Phys. A, 32 (2017), 1750008
- Boos E. E. et al., Phys. Rev. D, 79 (2009), 104013
- Kazakov D. I., Phys. Lett. B, 797 (2019), 134801
- Jenkins E. E., Manohar A. V., Trott M., J. High Energy Phys., 2013:10 (2013), 87
- Jenkins E. E., Manohar A. V., Trott M., J. High Energy Phys., 2014:01 (2014), 35
- Zhang C., Maltoni F., Phys. Rev. D, 88 (2013), 054005
- Mebane H. et al., Phys. Rev. D, 88 (2013), 015028
- Chen C.-Y., Dawson S., Zhang C., Phys. Rev. D, 89 (2014), 015016
- Zhang C., Phys. Rev. D, 90 (2014), 014008
- Franzosi D. B., Zhang C., Phys. Rev. D, 91 (2015), 114010
- Gröber R. et al., J. High Energy Phys., 2015:09 (2015), 92
- Hartmann C., Trott M., Phys. Rev. Lett., 115 (2015), 191801
- Hartmann C., Trott M., J. High Energy Phys., 2015:07 (2015), 151
- Zhang C., Phys. Rev. Lett., 116 (2016), 162002
- Bessidskaia Bylund O. et al., J. High Energy Phys., 2016:05 (2016), 52
- Maltoni F., Vryonidou E., Zhang C., J. High Energy Phys., 2016:10 (2016), 123
- Gauld R., Pecjak B. D., Scott D. J., Phys. Rev. D, 94 (2016), 074045
- Degrande C. et al., Eur. Phys. J. C, 77 (2017), 262
- Hartmann C., Shepherd W., Trott M., J. High Energy Phys., 2017:03 (2017), 60
- de Florian D., Fabre I., Mazzitelli J., J. High Energy Phys., 2017:10 (2017), 215
- Deutschmann N. et al., J. High Energy Phys., 2017:12 (2017), 63
- Baglio J., Dawson D., Lewis I. M., Phys. Rev. D, 96 (2017), 073003
- Dawson D., Giardino P. P., Phys. Rev. D, 97 (2018), 093003
- Degrande C. et al., J. High Energy Phys., 2018:10 (2018), 5
- Vryonidou E., Zhang C., J. High Energy Phys., 2018:08 (2018), 36
- Dedes A. et al., J. High Energy Phys., 2018:08 (2018), 103
- Dawson S., Giardino P. P., Phys. Rev. D, 98 (2018), 095005
- Dawson S., Ismail A., Phys. Rev. D, 98 (2018), 093003
- Dawson S., Giardino P. P., Ismail A., Phys. Rev. D, 99 (2019), 035044
- Baglio J., Dawson D., Lewis I. M., Phys. Rev. D, 99 (2019), 035029
- Cullen J. M., Pecjak B. D., Scott D. J., J. High Energy Phys., 2019:08 (2019), 173
- Neumann T., Sullivan Z., J. High Energy Phys., 2019:06 (2019), 22
- Kinoshita T., J. Math. Phys., 3 (1962), 650
- Lee T. D., Nauenberg M., Phys. Rev., 133 (1964), B1549
- Grinstein B., Wise M. B., Phys. Lett. B, 265 (1991), 326
- Peskin M. E., Takeuchi T., Phys. Rev. D, 46 (1992), 381
- Ellis J. et al., J. High Energy Phys., 2018:06 (2018), 146
- Falkowski A., Riva R., J. High Energy Phys., 2015:02 (2015), 39
- Heinemeyer S. et al. (LHC Higgs Cross Section Working Group), CERN-2013-004, CERN, Geneva, 2013
- Cepeda M. et al., CERN Yellow Rep. Monogr., 7 (2019), 221
- Aad G. et al. (ATLAS Collab.), Phys. Rev. D, 101 (2020), 012002
- Sirunyan A. M. et al. (CMS Collab.), Eur. Phys. J. C, 79 (2019), 421
- CMS Collab., Combined Higgs boson production and decay measurements with up to 137 $fb^{-1}$ of proton-proton collision data at $sqrt{s}= 13$ TeV, CMS-PAS-HIG-19-005
- Buckley A. et al. (The TopFitter Collab.), J. High Energy Phys., 2016:04 (2016), 15
- Gunion J. F. et al., Front. Phys., 80 (2000), 1
- Djouadi A., Phys. Rep., 457 (2008), 1
- Marciano W. J., Zhang C., Willenbrock S., Phys. Rev. D, 85 (2012), 013002
- Kane G. L., Ladinsky G. A., Yuan C.-P., Phys. Rev. D, 45 (1992), 124
- Whisnant K. et al., Phys. Rev. D, 56 (1997), 467
- Boos E. et al., Eur. Phys. J. C, 16 (2000), 269
- Aguilar-Saavedra J. A., Nucl. Phys. B, 804 (2008), 160
- Birman J. L. et al., Phys. Rev. D, 93 (2016), 113021
- Boos E., Bunichev V., Phys. Rev. D, 101 (2020), 055012
- Khachatryan V. et al. (CMS Collab.), J. High Energy Phys., 2017:02 (2017), 28
- Czakon M., Fiedler P., Mitov A., Phys. Rev. Lett., 110 (2013), 252004
- Czakon M. et al., J. High Energy Phys., 2017:10 (2017), 186
- Kidonakis N., PoS, 247 (2015), 170
- Sirunyan A. M. et al. (CMS Collab.), Eur. Phys. J. C, 79 (2019), 886
- Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 2020:03 (2020), 56
- Martin A. D. et al., Eur. Phys. J. C, 63 (2009), 189
- Kulesza A. et al., Eur. Phys. J. C, 79 (2019), 249
- Aaboud M. et al. (ATLAS Collab.), Phys. Rev. D, 99 (2019), 072009
- Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 2019:11 (2019), 82
- Aad G. et al. (ATLAS Collab.), Eur. Phys. J. C, 80 (2020), 1085
- Bevilacqua G., Worek M., J. High Energy Phys., 2012:07 (2012), 111
- Alwall J. et al., J. High Energy Phys., 2014:07 (2014), 79
- Frederix R., Pagani D., Zaro M., J. High Energy Phys., 2018:02 (2018), 31
- Hartland N. P. et al., J. High Energy Phys., 2019:04 (2019), 100
- Biekoetter A., Corbett T., Plehn T., SciPost Phys., 6:6 (2019), 064
- Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 08 (2018), 11
- Zhang C., Greiner N., Willenbrock S., Phys. Rev. D, 86 (2012), 014024
- Brivio I. et al., J. High Energy Phys., 2020:02 (2020), 131
- Lafaye R. et al., Eur. Phys. J. C, 54 (2008), 617
- Lafaye R. et al., J. High Energy Phys., 2009:08 (2009), 009
- Dawson S., Homiller S., Lane S. D., Phys. Rev. D, 102 (2020), 055012
- de Blas J. et al., J. High Energy Phys., 2015:04 (2015), 78
- Henning B., Lu X., Murayama H., J. High Energy Phys., 2016:01 (2016), 23
- de Blas J. et al., J. High Energy Phys., 2018:03 (2018), 109
- Das Bakshi S., Chakrabortty J., Patra S. K., Eur. Phys. J. C, 79 (2019), 21
Қосымша файлдар