The SMEFT formalism: the basis for finding deviations from the Standard Model

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The search for manifestations of physics beyond the Standard Model (SM) is one of the main directions of research at the LHC and future colliders under discussion. The effects caused by the new physics can consist in the direct detection of new particles if their masses are less than the characteristic energies available at colliders and their interactions with the SM particles are strong enough. But if the masses of new particles are too large, or the interactions with SM particles are too weak, then new particles cannot be detected directly. In this case, the new physics can lead to a modification of the interactions of SM particles, to subthreshold effects. We present„ the current status of an approach or formalism called the Standard Model Effective Field Theory (SMEFT), which allows„ us to describe and model deviations from the SM predictions in a theoretically consistent manner. The advantages of and serious problems with this approach are discussed.

Авторлар туралы

Edward Boos

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: boos@theory.sinp.msu.ru
Scopus Author ID: 35227010100
ResearcherId: D-9748-2012
Doctor of physico-mathematical sciences, Professor

Әдебиет тізімі

  1. Lee B. W., Quigg C., Thacker H. B., Phys. Rev. Lett., 38 (1977), 883
  2. Lee B. W., Quigg C., Thacker H. B., Phys. Rev. D, 16 (1977), 1519
  3. Chanowitz M. S., Preprint LBL-21973, Lawrence Berkeley Laboratory. Univ. of California, Berkeley, CA, 1986
  4. Dicus D. A., Mathur V. S., Phys. Rev. D, 7 (1973), 3111
  5. Aad G. et al. (ATLAS Collab.), Phys. Lett. B, 716 (2012), 1
  6. Chatrchyan S. et al. (CMS Collab.), Phys. Lett. B, 716 (2012), 30
  7. Beacham J. et al., J. Phys. G, 47 (2020), 010501
  8. Additional plots of the ATLAS Exotic physics group
  9. CMS Exotica Public Physics Results
  10. Weinberg S., Phys. Rev. Lett., 43 (1979), 1566
  11. Buchmüller W., Wyler D., Nucl. Phys. B, 268 (1986), 621
  12. Appelquist T., Carazzone J., Phys. Rev. D, 11 (1975), 2856
  13. Bogoliubow N. N., Parasiuk O. S., Acta Math., 97 (1957), 227
  14. Grzadkowski B. et al., J. High Energy Phys., 2010:10 (2010), 85
  15. Alonso R. et al., J. High Energy Phys., 2014:04 (2014), 159
  16. Gripaios B.
  17. Aguilar Saavedra J. A. et al.
  18. Boos E. et al., Int. J. Mod. Phys. A, 32 (2017), 1750008
  19. Boos E. E. et al., Phys. Rev. D, 79 (2009), 104013
  20. Kazakov D. I., Phys. Lett. B, 797 (2019), 134801
  21. Jenkins E. E., Manohar A. V., Trott M., J. High Energy Phys., 2013:10 (2013), 87
  22. Jenkins E. E., Manohar A. V., Trott M., J. High Energy Phys., 2014:01 (2014), 35
  23. Zhang C., Maltoni F., Phys. Rev. D, 88 (2013), 054005
  24. Mebane H. et al., Phys. Rev. D, 88 (2013), 015028
  25. Chen C.-Y., Dawson S., Zhang C., Phys. Rev. D, 89 (2014), 015016
  26. Zhang C., Phys. Rev. D, 90 (2014), 014008
  27. Franzosi D. B., Zhang C., Phys. Rev. D, 91 (2015), 114010
  28. Gröber R. et al., J. High Energy Phys., 2015:09 (2015), 92
  29. Hartmann C., Trott M., Phys. Rev. Lett., 115 (2015), 191801
  30. Hartmann C., Trott M., J. High Energy Phys., 2015:07 (2015), 151
  31. Zhang C., Phys. Rev. Lett., 116 (2016), 162002
  32. Bessidskaia Bylund O. et al., J. High Energy Phys., 2016:05 (2016), 52
  33. Maltoni F., Vryonidou E., Zhang C., J. High Energy Phys., 2016:10 (2016), 123
  34. Gauld R., Pecjak B. D., Scott D. J., Phys. Rev. D, 94 (2016), 074045
  35. Degrande C. et al., Eur. Phys. J. C, 77 (2017), 262
  36. Hartmann C., Shepherd W., Trott M., J. High Energy Phys., 2017:03 (2017), 60
  37. de Florian D., Fabre I., Mazzitelli J., J. High Energy Phys., 2017:10 (2017), 215
  38. Deutschmann N. et al., J. High Energy Phys., 2017:12 (2017), 63
  39. Baglio J., Dawson D., Lewis I. M., Phys. Rev. D, 96 (2017), 073003
  40. Dawson D., Giardino P. P., Phys. Rev. D, 97 (2018), 093003
  41. Degrande C. et al., J. High Energy Phys., 2018:10 (2018), 5
  42. Vryonidou E., Zhang C., J. High Energy Phys., 2018:08 (2018), 36
  43. Dedes A. et al., J. High Energy Phys., 2018:08 (2018), 103
  44. Dawson S., Giardino P. P., Phys. Rev. D, 98 (2018), 095005
  45. Dawson S., Ismail A., Phys. Rev. D, 98 (2018), 093003
  46. Dawson S., Giardino P. P., Ismail A., Phys. Rev. D, 99 (2019), 035044
  47. Baglio J., Dawson D., Lewis I. M., Phys. Rev. D, 99 (2019), 035029
  48. Cullen J. M., Pecjak B. D., Scott D. J., J. High Energy Phys., 2019:08 (2019), 173
  49. Neumann T., Sullivan Z., J. High Energy Phys., 2019:06 (2019), 22
  50. Kinoshita T., J. Math. Phys., 3 (1962), 650
  51. Lee T. D., Nauenberg M., Phys. Rev., 133 (1964), B1549
  52. Grinstein B., Wise M. B., Phys. Lett. B, 265 (1991), 326
  53. Peskin M. E., Takeuchi T., Phys. Rev. D, 46 (1992), 381
  54. Ellis J. et al., J. High Energy Phys., 2018:06 (2018), 146
  55. Falkowski A., Riva R., J. High Energy Phys., 2015:02 (2015), 39
  56. Heinemeyer S. et al. (LHC Higgs Cross Section Working Group), CERN-2013-004, CERN, Geneva, 2013
  57. Cepeda M. et al., CERN Yellow Rep. Monogr., 7 (2019), 221
  58. Aad G. et al. (ATLAS Collab.), Phys. Rev. D, 101 (2020), 012002
  59. Sirunyan A. M. et al. (CMS Collab.), Eur. Phys. J. C, 79 (2019), 421
  60. CMS Collab., Combined Higgs boson production and decay measurements with up to 137 $fb^{-1}$ of proton-proton collision data at $sqrt{s}= 13$ TeV, CMS-PAS-HIG-19-005
  61. Buckley A. et al. (The TopFitter Collab.), J. High Energy Phys., 2016:04 (2016), 15
  62. Gunion J. F. et al., Front. Phys., 80 (2000), 1
  63. Djouadi A., Phys. Rep., 457 (2008), 1
  64. Marciano W. J., Zhang C., Willenbrock S., Phys. Rev. D, 85 (2012), 013002
  65. Kane G. L., Ladinsky G. A., Yuan C.-P., Phys. Rev. D, 45 (1992), 124
  66. Whisnant K. et al., Phys. Rev. D, 56 (1997), 467
  67. Boos E. et al., Eur. Phys. J. C, 16 (2000), 269
  68. Aguilar-Saavedra J. A., Nucl. Phys. B, 804 (2008), 160
  69. Birman J. L. et al., Phys. Rev. D, 93 (2016), 113021
  70. Boos E., Bunichev V., Phys. Rev. D, 101 (2020), 055012
  71. Khachatryan V. et al. (CMS Collab.), J. High Energy Phys., 2017:02 (2017), 28
  72. Czakon M., Fiedler P., Mitov A., Phys. Rev. Lett., 110 (2013), 252004
  73. Czakon M. et al., J. High Energy Phys., 2017:10 (2017), 186
  74. Kidonakis N., PoS, 247 (2015), 170
  75. Sirunyan A. M. et al. (CMS Collab.), Eur. Phys. J. C, 79 (2019), 886
  76. Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 2020:03 (2020), 56
  77. Martin A. D. et al., Eur. Phys. J. C, 63 (2009), 189
  78. Kulesza A. et al., Eur. Phys. J. C, 79 (2019), 249
  79. Aaboud M. et al. (ATLAS Collab.), Phys. Rev. D, 99 (2019), 072009
  80. Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 2019:11 (2019), 82
  81. Aad G. et al. (ATLAS Collab.), Eur. Phys. J. C, 80 (2020), 1085
  82. Bevilacqua G., Worek M., J. High Energy Phys., 2012:07 (2012), 111
  83. Alwall J. et al., J. High Energy Phys., 2014:07 (2014), 79
  84. Frederix R., Pagani D., Zaro M., J. High Energy Phys., 2018:02 (2018), 31
  85. Hartland N. P. et al., J. High Energy Phys., 2019:04 (2019), 100
  86. Biekoetter A., Corbett T., Plehn T., SciPost Phys., 6:6 (2019), 064
  87. Sirunyan A. M. et al. (CMS Collab.), J. High Energy Phys., 08 (2018), 11
  88. Zhang C., Greiner N., Willenbrock S., Phys. Rev. D, 86 (2012), 014024
  89. Brivio I. et al., J. High Energy Phys., 2020:02 (2020), 131
  90. Lafaye R. et al., Eur. Phys. J. C, 54 (2008), 617
  91. Lafaye R. et al., J. High Energy Phys., 2009:08 (2009), 009
  92. Dawson S., Homiller S., Lane S. D., Phys. Rev. D, 102 (2020), 055012
  93. de Blas J. et al., J. High Energy Phys., 2015:04 (2015), 78
  94. Henning B., Lu X., Murayama H., J. High Energy Phys., 2016:01 (2016), 23
  95. de Blas J. et al., J. High Energy Phys., 2018:03 (2018), 109
  96. Das Bakshi S., Chakrabortty J., Patra S. K., Eur. Phys. J. C, 79 (2019), 21

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).