Magnetorotational instability in Keplerian disks: a nonlocal approach

Cover Page

Cite item

Full Text

Abstract

We revisit the modal analysis of small perturbations in Keplerian ideal gas flows with a constant vertical magnetic field leading to magnetorotational instability (MRI) using the nonlocal approach. In the general case, MRI modes are described by a Schr$\ddot o$dinger-like differential equation with some effective potential, including ‘repulsive’ ($1/r^{2}$) and ‘attractive’ ($-1/r^{3}$) terms, and are quantized. In shallow potentials, there are no stationary ‘energy levels.’ In thin Keplerian accretion discs, the perturbation wavelengths $\lambda =2\pi /k_{z}$ are smaller than the disc semi-thickness $h$ only in ‘deep’ potential wells. We find that there is a critical magnetic field for the MRI to develop. The instability arises for magnetic fields below this critical value. In thin accretion discs, at low background Alfv$\acute e$n velocity $c_A\ll (c_A)_cr$, the MRI instability increment $\omega $ is suppressed compared to the value obtained in the local perturbation analysis, $\omega \approx -\sqrt {3}ic_Ak_{z}$. We also investigate for the first time the case of a radially variable background magnetic field.

About the authors

Nikolai Ivanovich Shakura

Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute

Doctor of physico-mathematical sciences, Professor

Konstantin Aleksandrovich Postnov

Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute; Kazan (Volga Region) Federal University

Email: kpostnov@gmail.com
ORCID iD: 0000-0002-1705-617X
Scopus Author ID: 7004225195
ResearcherId: AAT-6111-2020
Doctor of physico-mathematical sciences, Professor

Dmitry Alekseevich Kolesnikov

Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute; Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy

Email: kolesnikovkda@gmail.com
Candidate of physico-mathematical sciences

Galina Vladimirovna Lipunova

Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute; Max-Planck-Institut für Radioastronomie

Email: galja@sai.msu.ru
Candidate of physico-mathematical sciences, Senior Researcher

References

  1. Shakura N. I., Sunyaev R. A., Astron. Astrophys., 24 (1973), 337
  2. Bisnovatyi-Kogan G. S., Lovelace R. V. E., New Astron. Rev., 45 (2001), 663
  3. Lipunova G., Malanchev K., Shakura N., Accretion Flows in Astrophysics, Astrophysics and Space Science Library, 454, Ed. N. Shakura, Springer, Cham, 2018, 1
  4. Boneva D. V. et al., Astron. Astrophys., 652 (2021), A38
  5. Somov B. V. et al., Adv. Space Res., 32 (2003), 1087
  6. Велихов Е. П., ЖЭТФ, 36 (1959), 1398
  7. Chandrasekhar S., Proc. Natl. Acad. Sci. USA, 46 (1960), 253
  8. Strutt J. W. (Lord Rayleigh), Proc. R. Soc. Lond. A, 93 (1917), 148
  9. Parker E. N., Astrophys. J., 145 (1966), 811
  10. Balbus S. A., Hawley J. F., Astrophys. J., 376 (1991), 214
  11. Balbus S. A., Hawley J. F., Rev. Mod. Phys., 70 (1998), 1
  12. Hawley J. F., Gammie C. F., Balbus S. A., Astrophys. J., 440 (1995), 742
  13. Sorathia K. A. et al., Astrophys. J., 749 (2012), 189
  14. Hawley J. F. et al., Astrophys. J., 772 (2013), 102
  15. Kato S., Fukue J., Mineshige S., Black-Hole Accretion Disks, Kyoto Univ. Press, Kyoto, Japan, 1998
  16. Shakura N., Postnov K., Mon. Not. R. Astron. Soc., 451 (2015), 3995
  17. Zou R. et al., Phys. Rev. E, 101 (2020), 013201
  18. Papaloizou J., Szuszkiewicz E., Geophys. Astrophys. Fluid Dyn., 66 (1992), 223
  19. Kumar S., Coleman C. S., Kley W., Mon. Not. R. Astron. Soc., 266 (1994), 379
  20. Gammie C. F., Balbus S. A., Mon. Not. R. Astron. Soc., 270 (1994), 138
  21. Curry C., Pudritz R. E., Sutherland P. G., Astrophys. J., 434 (1994), 206
  22. Latter H. N., Fromang S., Faure J., Mon. Not. R. Astron. Soc., 453 (2015), 3257
  23. Knobloch E., Mon. Not. R. Astron. Soc., 255 (1992), 25P
  24. Dubrulle B., Knobloch E., Astron. Astrophys., 274 (1993), 667
  25. Shakura N. I., Lipunova G. V., Mon. Not. R. Astron. Soc., 480 (2018), 4273
  26. Shakura N., Postnov K., Mon. Not. R. Astron. Soc., 448 (2015), 3697
  27. Ландау Л. Д., Лифшиц Е. М., Квантовая механика. Нерелятивистская теория, Наука, М., 1989
  28. Flügge S., Practical Quantum Mechanics, Springer-Verlag, Berlin, 1971
  29. Ландау Л. Д., Лифшиц Е. М., Гидродинамика, Наука, М., 1986
  30. Acheson D. J., Elementary Fluid Dynamics, Clarendon Press, Oxford, 1990
  31. Shakura N., Postnov K., Accretion Flows in Astrophysics, Astrophysics and Space Science Library, 454, Ed. N. Shakura, Springer, Cham, 2018, 393
  32. Salmeron R., Königl A., Wardle M., Mon. Not. R. Astron. Soc., 375 (2007), 177
  33. Bai X.-N., Stone J. M., Astrophys. J., 769 (2013), 76
  34. Curry C., Pudritz R. E., Mon. Not. R. Astron. Soc., 281 (1996), 119
  35. Левитан Б. М., Саргсян И. С., Операторы Штурма—Лиувилля и Дирака, Наука, М., 1988

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).