Unitarity relation and unitarity bounds for scalars with different sound speeds

Cover Page

Cite item

Full Text

Abstract

We consider a theory which contains massless scalar fields with different sound speeds. For these theories we derive unitarity relations for partial wave amplitudes of $ 2 \to 2$ scattering, with explicit formulas for contributions of two-particle intermediate states. We also obtain unitarity bounds both in the most general case and in the case considered in the literature for the speed of sound, equal to unity. We illustrate our unitarity relations by explicit one-loop calculation to the first nontrivial order in couplings in a simple model of two scalar fields with different sound speeds. Obtained unitarity bounds can be used to estimating the strong coupling scale of a pertinent effective field theory (EFT).

About the authors

Yulia Aleksandrovna Ageeva

Institute for Nuclear Research, Russian Academy of Sciences; Lomonosov Moscow State University, Faculty of Physics; Institute for Theoretical and Mathematical Physics of Lomonosov Moscow State University

without scientific degree, no status

Pavel Konstantinovich Petrov

Institute for Nuclear Research, Russian Academy of Sciences

References

  1. Armendariz-Picon C., Damour T., Mukhanov V., Phys. Lett. B, 458 (1999), 209
  2. Garriga J., Mukhanov V. F., Phys. Lett. B, 458 (1999), 219
  3. Alishahiha M., Silverstein E., Tong D., Phys. Rev. D, 70 (2004), 123505
  4. Kobayashi T., Yamaguchi M., Yokoyama J., Phys. Rev. Lett., 105 (2010), 231302
  5. Kobayashi T., Yamaguchi M., Yokoyama J., Prog. Theor. Phys., 126 (2011), 511
  6. Creminelli P., Nicolis A., Trincherini E., JCAP, 2010:11 (2010), 021
  7. Hinterbichler K. et al., JCAP, 2012:12 (2012), 030
  8. Pirtskhalava D. et al., J. High Energy Phys., 2014:12 (2014), 151
  9. Nishi S., Kobayashi T., JCAP, 2015:03 (2015), 057
  10. Kobayashi T., Yamaguchi M., Yokoyama J., JCAP, 2015:07 (2015), 017
  11. Kolevatov R. et al., JCAP, 2017:08 (2017), 038
  12. Qiu T. et al., JCAP, 2011:10 (2011), 036
  13. Easson D. A., Sawicki I., Vikman A., JCAP, 2011:11 (2011), 021
  14. Cai Y.-F., Easson D. A., Brandenberger R., JCAP, 2012:08 (2012), 020
  15. Osipov M., Rubakov V., JCAP, 2013:11 (2013), 031
  16. Qiu T., Gao X., Saridakis E. N., Phys. Rev. D, 88 (2013), 043525
  17. Koehn M., Lehners J.-L., Ovrut B. A., Phys. Rev. D, 90 (2014), 025005
  18. Qiu T., Wang Y.-T., J. High Energy Phys., 2015:04 (2015), 130
  19. Ijjas A., Steinhardt P. J., Phys. Rev. Lett., 117 (2016), 121304
  20. Mironov S., Rubakov V., Volkova V., JCAP, 2018:10 (2018), 050
  21. Armendariz-Picon C., Mukhanov V., Steinhardt P. J., Phys. Rev. Lett., 85 (2000), 4438
  22. Armendariz-Picon C., Mukhanov V., Steinhardt P. J., Phys. Rev. D, 63 (2001), 103510
  23. Deffayet C. et al., JCAP, 2010:10 (2010), 026
  24. De Felice A., Kobayashi T., Tsujikawa S., Phys. Lett. B, 706 (2011), 123
  25. De Felice A., Tsujikawa S., JCAP, 2012:02 (2012), 007
  26. Amendola L. et al., Phys. Rev. D, 87 (2013), 023501
  27. Gubitosi G., Piazza F., Vernizzi F., JCAP, 2013:02 (2013), 032
  28. Bloomfield J. et al., JCAP, 2013:08 (2013), 010
  29. Gleyzes J. et al., JCAP, 2013:08 (2013), 025
  30. Kase R., Tsujikawa S., Int. J. Mod. Phys. D, 28 (2019), 1942005
  31. Horndeski G. W., Int. J. Theor. Phys., 10 (1974), 363
  32. Penrose R., Phys. Rev. Lett., 14 (1965), 57
  33. Hawking S. W., Ellis G. F. R., The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge, 2023
  34. Tipler F. J., Phys. Rev. D, 17 (1978), 2521
  35. Рубаков В. А., УФН, 184 (2014), 137
  36. Ageeva Y., Petrov P., Rubakov V., Phys. Rev. D, 104 (2021), 063530
  37. Libanov M., Mironov S., Rubakov V., JCAP, 2016:08 (2016), 037
  38. Kobayashi T., Phys. Rev. D, 94 (2016), 043511
  39. Ijjas A., Steinhardt P. J., Phys. Lett. B, 764 (2017), 289
  40. Ageeva Yu., Petrov P., Rubakov V., J. High Energy Phys., 2023:01 (2023), 026
  41. Oller J. A., Prog. Part. Nucl. Phys., 110 (2020), 103728
  42. Oller J. A., A Brief Introduction to Dispersion Relations. With Modern Applications, Springer Intern. Publ., Cham, 2019
  43. Lacour A., Oller J. A., Meissner U.-G., Ann. Physics, 326 (2011), 241
  44. Gülmez D., Meissner U.-G., Oller J. A., Eur. Phys. J. C, 77 (2017), 460
  45. Martin A. D., Spearman T. D., Elementary Particle Theory, North-Holland Publ. Co., Amsterdam, 1970
  46. Oller J. A., Entem D. R., Ann. Physics, 411 (2019), 167965
  47. Jackson J. D., Classical Electrodynamics, Wiley, New York, 1999
  48. De Curtis S., Dominici D., Pelaez J. R., Phys. Rev. D, 67 (2003), 076010
  49. Lee B. W., Quigg C., Thacker H. B., Phys. Rev. Lett., 38 (1977), 883
  50. Lee B. W., Quigg C., Thacker H. B., Phys. Rev. D, 16 (1977), 1519
  51. Chanowitz M. S., Gaillard M. K., Nucl. Phys. B, 261 (1985), 379
  52. Грожан К., УФН, 177 (2007), 3
  53. Ambegaokar V., deGennes P. G., Rainer D., Phys. Rev. A, 9 (1974), 2676
  54. Ticknor C., Wilson R. M., Bohn J. L., Phys. Rev. Lett., 106 (2011), 065301
  55. Blaschke D. N., J. Phys. Condens. Matter, 33 (2021), 503005
  56. Belich H. (Jr.) et al., Phys. Rev. D, 67 (2003), 125011
  57. Avila R. et al., Phys. Rev. D, 101 (2020), 055011
  58. Rubtsov G., Satunin P., Sibiryakov S., Phys. Rev. D, 86 (2012), 085012
  59. Satunin P., Phys. Rev. D, 97 (2018), 125016

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).