Method of thermal desorption study of hydrogen states in carbon materials and nanomaterials

Cover Page

Cite item

Full Text

Abstract

An efficient technique for processing, analyzing, and interpreting thermal desorption spectra (TDSs) of hydrogen in carbon materials and nanomaterials obtained using a single heating rate is developed, which makes it possible to study various states of hydrogen and determine the characteristics corresponding to them, including the rate constants and activation energies of desorption processes. The method is no less informative, but much less laborious from the experimental point of view, than the generally accepted (to determine such characteristics) Kissinger method, which requires using several heating rates and has strict limits on applicability. The developed technique is based on approximating the hydrogen TDS by Gaussians and processing their peaks in the approximation of first and second order reactions. The technique includes the use of nonstandard criteria of ‘likelihood’ and/or ‘physicality’ of the results, as well as verification and/or refinement of the results by numerical modeling methods that allow approximating TDSs not by Gaussians but by curves corresponding to first or second order reactions.

About the authors

Yurii Sergeevich Nechaev

I. P. Bardin Central Research Institute of Iron and Steel Industry

Email: yuri1939@inbox.ru

Evgeny A. Denisov

Saint Petersburg State University

Email: denisov70@bk.ru

Alisa O. Cheretaeva

Togliatti State University

Email: a.cheretaeva@tltsu.ru

Nadezhda Aleksandrovna Shurygina

I. P. Bardin Central Research Institute of Iron and Steel Industry

Email: shnadya@yandex.ru
Candidate of physico-mathematical sciences

Ekaterina Konstantinovna Kostikova

Institute of Applied Mathematical Research of the Karelian Research Centre RAS

Candidate of physico-mathematical sciences, no status

Sergei Yu. Davydov

Ioffe Institute

References

  1. Hou J. et al., Phys. Chem. Chem. Phys., 13 (2011), 15384
  2. Tozzini V., Pellegrini V., Phys. Chem. Chem. Phys., 15 (2013), 80
  3. Tanabe T., Физика плазмы, 45 (2019), 387
  4. Atsumi H., Kondo Y., Fusion Eng. Design, 131 (2018), 49
  5. Kissinger H. E., Anal. Chem., 29 (1957), 1702
  6. Wei F.-G., Enomoto M., Tsuzaki K., Comput. Mater. Sci., 51 (2012), 322
  7. Drexler A. et al., Int. J. Hydrogen Energy, 46 (2021), 39590
  8. Legrand E. et al., Int. J. Hydrogen Energy, 40 (2015), 2871
  9. Ebihara K. et al., ISIJ Int., 49 (2009), 1907
  10. Нечаев Ю. С., УФН, 176 (2006), 581
  11. Nechaev Yu. S., Veziroglu T. N., Int. J. Phys. Sci., 10:2 (2015), 54
  12. Nechaev Yu. S. et al., Int. J. Hydrogen Energy, 45 (2020), 25030
  13. Нечаев Ю. С. и др., Изв. РАН. Сер. физ., 85 (2021), 918
  14. Заика Ю. В., Костикова Е. К., Нечаев Ю. С., ЖТФ, 91 (2021), 222
  15. Nechaev Yu. S. et al., Fullerenes Nanotubes Carbon Nanostruct., 28 (2020), 2147
  16. Nechaev Yu. S. et al., J. Nucl. Mater., 535 (2020), 152162
  17. Нечаев Ю. С. и др., Письма в ЖЭТФ, 114 (2021), 372
  18. Нечаев Ю. С. и др., Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2022, № 2, 64
  19. Nechaev Yu. S. et al., Fullerenes Nanotubes Carbon Nanostruct., 30 (2022), 211
  20. Nechaev Yu. S. et al., Key Eng. Mater., 910 (2022), 559
  21. Nechaev Yu. S. et al., J. Carbon Res. C, 8:1 (2022), 6
  22. Zhao X. et al., J. Chem. Phys., 124 (2006), 194704
  23. Habenschaden E., Küppers J., Surf. Sci. Lett., 138 (1984), L147
  24. Денисов E. A., Компаниец Т. Н., ЖТФ, 71:2 (2001), 111
  25. Zecho T. et al., J. Chem. Phys., 117 (2002), 8486
  26. Zecho T., Güttler A., Küppers J., Carbon, 42 (2004), 609
  27. Hornekaer L. et al., Phys. Rev. Lett., 96 (2006), 156104
  28. Hornekaer L. et al., Phys. Rev. Lett., 97 (2006), 186102
  29. Rajasekaran S. et al., Phys. Rev. Lett., 111 (2013), 085503
  30. Sofo J. O., Chaudhari A. S., Barber G. D., Phys. Rev. B, 75 (2007), 153401
  31. Elias D. C. et al., Science, 323 (2009), 610
  32. Sudan P. et al., Carbon, 41 (2003), 2377
  33. Nayyar I. et al., J. Carbon Res., 6 (2020), 1
  34. Park C. et al., J. Phys. Chem. B, 103 (1999), 10572
  35. Baker R. T. K., Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, 2005
  36. Башкин И. О. и др., Письма в ЖЭТФ, 79 (2004), 280
  37. Sun Y. et al., Sci. Adv., 7 (2021), eabg3983
  38. Lee S.-Y. et al., Processes, 10 (2022), 304
  39. Нечаев Ю. С. и др., Кинетика и катализ, 63 (2022), 526

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).