Low-frequency oscillations in the direct osmotic process in a membrane with nanosized pores
- Authors: Lapushkin G.I.1, Stozhkov V.Y.1
-
Affiliations:
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 193, No 9 (2023)
- Pages: 989-993
- Section: Physics of our days
- URL: https://journals.rcsi.science/0042-1294/article/view/256622
- DOI: https://doi.org/10.3367/UFNr.2023.06.039365
- ID: 256622
Cite item
Full Text
Abstract
The existence of low-frequency oscillations (1–10 Hz) in some modes of membrane processes (reverse osmosis, electroosmosis, bioosmotic phenomena, and fuel cells) has long been known. Although oscillations are only an accompanying effect of osmotic processes in membranes, many researchers noted such phenomena in their studies. We were the first to discover pressure fluctuations in an osmotic cell during direct osmosis. In the above osmotic processes, there is a significant impact of external factors (e.g., a superimposed external electric field) — but there are no such factors in the process of direct osmosis, allowing us to assert that oscillations are a consequence of the intrinsic properties of the membrane and the transport of water into the cell that occurs in it, which will allow a better understanding of the mechanisms of the processes in the membrane.
Keywords
About the authors
Georgy Ivanovich Lapushkin
Moscow Institute of Physics and Technology (National Research University)Candidate of physico-mathematical sciences, Associate professor
Vladimir Yu. Stozhkov
Moscow Institute of Physics and Technology (National Research University)
References
- Teorell T., J. Gen. Physiol., 42 (1959), 831
- Langer P., Page K. R., Weidner G., Biophys. J., 36 (1981), 93
- Gedalin K., Physica D, 110 (1997), 154
- Будников Е. Ю. и др., Журн. физ. химии, 73 (1999), 198
- Будников Е. Ю. и др., Электрохимия, 37 (2001), 95
- Kanamori T. et al., J. Membrane Sci., 184 (2001), 287
- Тихонов Н. А., Токмачев Н. Г., Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия, 2010, № 6, 33
- Li H., Jian Y., Int. J. Heat Mass Transfer, 115 (2017), 703
- Ito T. et al., J. Membrane Sci., 448 (2013), 231
- Saraiva G. F. R., Souza G. M., Procedia Environment. Sci., 29 (2015), 55
- Oglecka K. et al., eLIFE, 3 (2014), e03695
- Sanchez D. G. et al., J. Electroanalyt. Chem., 649 (2010), 219
- Тихонов Н. А., Журн. физ. химии, 84 (2010), 1506
- Jin Z.-H., Microvascular Res., 133 (2021), 104097
- Rastogi R. P., Srivastava R. C., Adv. Colloid Interface Sci., 93 (2001), 1
- Шахиджанов С. С. и др., УФН, 189 (2019), 703
- Тропинина А. Д. и др., Труды 63-й Всероссийской научной конф. МФТИ 23-29 ноября 2020. Фундаментальная и прикладная физика, Секция общей физики, МФТИ, М., 2020, 233
- Wang L. et al., Sci. Adv., 9 (2023), eadf8488
- Драгунов В. П., Неизвестный И. Г., Гридчин В. А., Основы наноэлектроники, Изд-во НГТУ, Новосибирск, 2000, 18
- Goula A. M., Kokolaki M., Daftsiou E., Food Bioproducts Process., 105 (2017), 157
- Misra J. C., Сhandra S., Herwig H., J. Hydrodyn., 27 (2015), 350
- Sadek S. H., Pinho F. T., J. Non-Newtonian Fluid Mech., 266 (2019), 46
- Ullah A. et al., Desalination, 491 (2020), 114428
- Horie T. et al., J. Membrane Sci., 554 (2018), 134
- Li N. et al., J. Mater. Chem. A, 11 (2023), 297
Supplementary files
