On the role of phantom sources in the theory of superlenses

Cover Page

Cite item

Full Text

Abstract

The effect of the appearance of ‘phantom sources’ in a theoretical model of an image formed by an ideal Veselago lens has been investigated by transformation optics (TO) methods. It is shown that this effect cannot be used to explain the mechanism of superlensing. A method is proposed for eliminating phantom sources in the construction of image models by TO methods. An expression is given for the electromagnetic field which forms an ideal image of a point radiation source when its distance from the front surface of the lens is equal to its thickness. An explanation is given as to why a rigorous model of the ideal image of a dipole source cannot be constructed if the distance between the source and the lens is shorter than its thickness.

About the authors

Lev Sergeevich Dolin

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; National Research Lobachevsky State University of Nizhny Novgorod

Email: lev.dolin@ipfran.ru
Candidate of physico-mathematical sciences, Main Scientist Researcher

References

  1. Веселаго В. Г., УФН, 92 (1967), 517
  2. Веселаго В. Г., ФТТ, 8 (1966), 3571
  3. Pendry J. B., Phys. Rev. Lett., 85 (2000), 3966
  4. Shelby R. A., Smith D. R., Schultz S., Science, 292 (2001), 77
  5. Cummer S. A., Appl. Phys. Lett., 82 (2003), 1503
  6. Rao X. S., Ong C. K., Phys. Rev. B, 68 (2003), 113103
  7. Lagarkov A. N., Kissel V. N., Phys. Rev. Lett., 92 (2004), 077401
  8. Pendry J. B., Contemp. Phys., 45:3 (2004), 191
  9. Grbic A., Eleftheriades G. V., Phys. Rev. Lett., 92 (2004), 117403
  10. Smith D. R., Pendry J. B., Wiltshire M. C. K., Science, 305 (2004), 788
  11. Merlin R., Appl. Phys. Lett., 84 (2004), 1290
  12. Podolskiy V. A., Kuhta N. A., Milton G. W., Appl. Phys. Lett., 87 (2005), 231113
  13. Fang N. et al., Science, 308 (2005), 534
  14. Lee H. et al., New J. Phys., 7 (2005), 255
  15. Melville D. O. S., Blaikie R. J., Opt. Express, 13 (2005), 2127
  16. Podolskiy V. A., Narimanov E. E., Opt. Lett., 30:1 (2005), 75
  17. Veselago V. G. et al., J. Comput. Theor. Nanosci., 3 (2006), 189
  18. Лагарьков А. Н. и др., УФН, 179 (2009), 1018
  19. Collin R. E., Prog. Electromagn. Res. B, 19 (2010), 233
  20. Gralak B., Maystre D., C.R. Phys., 13 (2012), 786
  21. Лагарьков А. Н., Кисель В. Н., Энергия, 2018, № 1, 10
  22. Селина Н. В., УФН, 192 (2022), 443
  23. Nicorovici N. A., McPhedran R. C., Milton G. W., Phys. Rev. B, 49 (1994), 8479
  24. Smith D. R. et al., Appl. Phys. Lett., 82 (2001), 1506
  25. Pendry J. B., Opt. Express, 11 (2003), 755
  26. Milton G. et al., Proc. R. Soc. A, 461 (2005), 3999
  27. Yan M., Yan W., Qiu M., Phys. Rev. B, 78 (2008), 125113
  28. Ammari H. et al., Proc. R. Soc. A, 469 (2013), 20130048
  29. McPhedran R. C., Milton G. W., C.R. Phys., 21 (2020), 409
  30. Долин Л. С., Изв. вузов. Радиофизика, 64:2 (2021), 138
  31. Dolin L. S., J. Opt. Soc. Am. B, 38 (2021), 2338
  32. Pendry J. B., Schurig D., Smith D. R., Science, 312 (2006), 1780
  33. Долин Л. С., Изв. вузов. Радиофизика, 4 (1961), 964
  34. Post E. J., Formal Structure of Electromagnetics : General Covariance and Electromagnetics, Interscience Publ., New York, 1962
  35. Lax M., Nelson D. F., Phys. Rev. B, 13 (1976), 1777
  36. Ward A. J., Pendry J. B., J. Mod. Opt., 43 (1996), 773
  37. Leonhardt U., Philbin T. G., New J. Phys., 8 (2006), 247
  38. Гузатов Д. В., Климов В. В., Квантовая электроника, 44 (2014), 873
  39. Гузатов Д. В., Климов В. В., Квантовая электроника, 44 (2014), 1112
  40. Климов В. В., УФН, 191 (2021), 1044
  41. Климов В. В., УФН, 193 (2023), 279

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).