On the role of phantom sources in the theory of superlenses
- Authors: Dolin L.S.1,2
-
Affiliations:
- Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
- National Research Lobachevsky State University of Nizhny Novgorod
- Issue: Vol 193, No 8 (2023)
- Pages: 902-908
- Section: Methodological notes
- URL: https://journals.rcsi.science/0042-1294/article/view/256615
- DOI: https://doi.org/10.3367/UFNr.2023.01.039317
- ID: 256615
Cite item
Full Text
Abstract
The effect of the appearance of ‘phantom sources’ in a theoretical model of an image formed by an ideal Veselago lens has been investigated by transformation optics (TO) methods. It is shown that this effect cannot be used to explain the mechanism of superlensing. A method is proposed for eliminating phantom sources in the construction of image models by TO methods. An expression is given for the electromagnetic field which forms an ideal image of a point radiation source when its distance from the front surface of the lens is equal to its thickness. An explanation is given as to why a rigorous model of the ideal image of a dipole source cannot be constructed if the distance between the source and the lens is shorter than its thickness.
About the authors
Lev Sergeevich Dolin
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; National Research Lobachevsky State University of Nizhny Novgorod
Email: lev.dolin@ipfran.ru
Candidate of physico-mathematical sciences, Main Scientist Researcher
References
- Веселаго В. Г., УФН, 92 (1967), 517
- Веселаго В. Г., ФТТ, 8 (1966), 3571
- Pendry J. B., Phys. Rev. Lett., 85 (2000), 3966
- Shelby R. A., Smith D. R., Schultz S., Science, 292 (2001), 77
- Cummer S. A., Appl. Phys. Lett., 82 (2003), 1503
- Rao X. S., Ong C. K., Phys. Rev. B, 68 (2003), 113103
- Lagarkov A. N., Kissel V. N., Phys. Rev. Lett., 92 (2004), 077401
- Pendry J. B., Contemp. Phys., 45:3 (2004), 191
- Grbic A., Eleftheriades G. V., Phys. Rev. Lett., 92 (2004), 117403
- Smith D. R., Pendry J. B., Wiltshire M. C. K., Science, 305 (2004), 788
- Merlin R., Appl. Phys. Lett., 84 (2004), 1290
- Podolskiy V. A., Kuhta N. A., Milton G. W., Appl. Phys. Lett., 87 (2005), 231113
- Fang N. et al., Science, 308 (2005), 534
- Lee H. et al., New J. Phys., 7 (2005), 255
- Melville D. O. S., Blaikie R. J., Opt. Express, 13 (2005), 2127
- Podolskiy V. A., Narimanov E. E., Opt. Lett., 30:1 (2005), 75
- Veselago V. G. et al., J. Comput. Theor. Nanosci., 3 (2006), 189
- Лагарьков А. Н. и др., УФН, 179 (2009), 1018
- Collin R. E., Prog. Electromagn. Res. B, 19 (2010), 233
- Gralak B., Maystre D., C.R. Phys., 13 (2012), 786
- Лагарьков А. Н., Кисель В. Н., Энергия, 2018, № 1, 10
- Селина Н. В., УФН, 192 (2022), 443
- Nicorovici N. A., McPhedran R. C., Milton G. W., Phys. Rev. B, 49 (1994), 8479
- Smith D. R. et al., Appl. Phys. Lett., 82 (2001), 1506
- Pendry J. B., Opt. Express, 11 (2003), 755
- Milton G. et al., Proc. R. Soc. A, 461 (2005), 3999
- Yan M., Yan W., Qiu M., Phys. Rev. B, 78 (2008), 125113
- Ammari H. et al., Proc. R. Soc. A, 469 (2013), 20130048
- McPhedran R. C., Milton G. W., C.R. Phys., 21 (2020), 409
- Долин Л. С., Изв. вузов. Радиофизика, 64:2 (2021), 138
- Dolin L. S., J. Opt. Soc. Am. B, 38 (2021), 2338
- Pendry J. B., Schurig D., Smith D. R., Science, 312 (2006), 1780
- Долин Л. С., Изв. вузов. Радиофизика, 4 (1961), 964
- Post E. J., Formal Structure of Electromagnetics : General Covariance and Electromagnetics, Interscience Publ., New York, 1962
- Lax M., Nelson D. F., Phys. Rev. B, 13 (1976), 1777
- Ward A. J., Pendry J. B., J. Mod. Opt., 43 (1996), 773
- Leonhardt U., Philbin T. G., New J. Phys., 8 (2006), 247
- Гузатов Д. В., Климов В. В., Квантовая электроника, 44 (2014), 873
- Гузатов Д. В., Климов В. В., Квантовая электроника, 44 (2014), 1112
- Климов В. В., УФН, 191 (2021), 1044
- Климов В. В., УФН, 193 (2023), 279
Supplementary files
