Optical nanoresonators
- Authors: Климов V.V.1
-
Affiliations:
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences
- Issue: Vol 193, No 3 (2023)
- Pages: 279-304
- Section: Reviews of topical problems
- URL: https://journals.rcsi.science/0042-1294/article/view/256577
- DOI: https://doi.org/10.3367/UFNr.2022.02.039153
- ID: 256577
Cite item
Full Text
Abstract
The review presents an analysis and generalization of classical and most modern approaches to the description and development of the principles of operation of open optical nanoresonators, that is, resonators, all sizes of which are smaller than the resonant wavelength of radiation in vacuum. Particular attention is paid to the physics of such phenomena as bound states in a continuum, anapole states, supercavity modes, and perfect nonradiating modes with extremely high quality factors and localizations of electromagnetic fields. An analysis of the optical properties of natural oscillations in nanoresonators made of metamaterials is also presented in the review. The effects considered in this review, besides being of fundamental import, can also find applications in the development of optical nanoantennas, nanolasers, biosensors, photovoltaic devices, and nonlinear nanophotonics.
About the authors
Vasilii Vasil'evich Климов
P. N. Lebedev Physical Institute of the Russian Academy of Sciences
Email: klimov256@gmail.com
ResearcherId: N-4985-2015
Doctor of physico-mathematical sciences, Main Scientist Researcher
References
- Климов В. В., Наноплазмоника, 2-е испр. изд., Физматлит, М., 2010
- Noginov M. A. et al., Nature, 460 (2009), 1110
- Ge D. et al., Nat. Commun., 11 (2020), 3414
- Kwon S.-H. et al., Nano Lett., 10 (2010), 3679
- Celebrano M. et al., Nat. Nanotechnol., 10 (2015), 412
- Biagioni P., Huang J.-S., Hecht B., Rep. Prog. Phys., 75 (2012), 024402
- Yang Z.-J. et al., Phys. Rep., 701 (2017), 1
- Paniagua-Dominguez R. et al., J. Appl. Phys., 126 (2019), 150401
- Краснок А. Е. и др., Письма в ЖЭТФ, 94 (2011), 635
- Krasnok A. E. et al., Opt. Express, 20 (2012), 20599
- Краснок А. Е. и др., УФН, 183 (2013), 561
- Rocco D. et al., J. Opt. Soc. Am. B, 34 (2017), 1918
- Sinev I. et al., ACS Photon., 7 (2020), 680
- Luk'yanchuk B. S. et al., ACS Photon., 2 (2015), 993
- Manna U. et al., J. Appl. Phys., 127 (2020), 033101
- Baranov D. G. et al., Optica, 4 (2017), 814
- Kivshar Yu., Natl. Sci. Rev., 5 (2018), 144
- Koshelev K. et al., Nanophotonics, 8 (2019), 725
- Yang Y., Bozhevolnyi S. I., Nanotechnology, 30 (2019), 204001
- Physicists Trap Light in Nanoresonators for Record Time, ITMO News, 17.01.2020
- Koshelev K. et al., Science, 367 (2020), 288
- Tiguntseva E. et al., ACS Nano, 14 (2020), 8149
- Zenin V. A. et al., ACS Photon., 7 (2020), 1067
- Melik-Gaykazyan E. et al., Nano Lett., 21 (2021), 1765
- Mylnikov V. et al., ACS Nano, 14 (2020), 7338
- Hwang M.-S. et al., Nanophotonics, 10 (2021), 3599
- Sadrieva Z. et al., Phys. Rev. B, 100 (2019), 115303
- Bogdanov A. A. et al., Adv. Photon., 1 (2019), 016001
- Carletti L. et al., Phys. Rev. Res., 1 (2019), 023016
- Carletti L. et al., Phys. Rev. Lett., 121 (2018), 33903
- Parker J. A. et al., Phys. Rev. Lett., 124 (2020), 097402
- Luk'yanchuk B. et al., Phys. Rev. A, 95 (2017), 063820
- Miroshnichenko A. E. et al., Nat. Commun., 6 (2015), 8069
- Luk'yanchuk B. et al., Philos. Trans. R. Soc. A, 375 (2017), 20160069
- Baryshnikova K. V. et al., Adv. Opt. Mater., 7 (2019), 1801350
- Wei L. et al., Optica, 3 (2016), 799
- Rybin M. V. et al., Phys. Rev. Lett., 119 (2017), 243901
- Odit M. et al., Adv. Mater., 33 (2021), 2003804
- Klimov V., Opt. Lett., 45 (2020), 4300
- Klimov V., Photonics, 9 (2022), 1005
- Klimov V. V., Guzatov D. V., Photonics, 10 (2023), 248
- Schwefel H. G. L. et al., Optical Microcavities, Advanced Series in Applied Physics, 5, Ed. K. Vahala, World Scientific, Singapore, 2004, 415
- Jackson J. D., Classical Electrodynamics, Wiley, New York, 1975
- Courant R., Hilbert D., Methoden der mathematischen Physik, Springer, Berlin, 1924
- de Broglie L., Problèmes de propagations guidees des ondes electromagnetiques, Gauthier-Villars, Paris, 1941
- Вайнштейн Л. А., Открытые резонаторы и открытые волноводы, Советское радио, М., 1966
- Richtmyer R. D., J. Appl. Phys., 10 (1939), 391
- Affolter P., Eliasson B., IEEE Trans. Microwave Theory Tech., 21 (1973), 573
- Christopoulos T. et al., Opt. Express, 27 (2019), 14505
- Wu T., Gurioli M., Lalanne P., ACS Photon., 8 (2021), 1522
- Bohren C. F., Huffman D. R., Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983
- Kristensen P. T., Van Vlack C., Hughes S., AIP Conf. Proc., 1398 (2011), 100
- Kristensen P. T., Hughes S., ACS Photon., 1 (2014), 2
- Sauvan C. et al., Phys. Rev. Lett., 110 (2013), 237401
- Lalanne P. et al., Laser Photon. Rev., 12 (2018), 1700113
- Muljarov E. A., Langbein W., Phys. Rev. B, 94 (2016), 235438
- Coccioli R. et al., IEE Proc. Optoelectron., 145 (1998), 391
- Doost M. B., Langbein W., Muljarov E. A., Phys. Rev. A, 87 (2013), 043827
- Sauvan C., Opt. Express, 29 (2021), 8268
- Дмитриев В. И., Захаров Е. В., Метод интегральных уравнений в вычислительной электродинамике, МАКС Пресс, М., 2008
- Bulygin V. S. et al., IET Microwaves Antennas Propag., 9 (2015), 1186
- Sukharevsky I. O. et al., Opt. Eng., 58:1 (2019), 016115
- Давидович М. В., Изв. Саратовского ун-та. Новая серия. Сер. Физика, 8:1 (2008), 3
- Войтович Н. Н., Каценеленбаум Б. З., Сивов А. Н., УФН, 118 (1976), 709
- Войтович H. H., Каценеленбаум Б. З., Сивов А. Н., Обобщенный метод собственных колебаний в теории дифракции, Наука, М., 1977
- Климов В. В., Дюклуа М., Летохов В. С., Квантовая электроника, 31 (2001), 569
- von Neumann J., Wigner E. P., Phys. Z., 30 (1929), 465
- ельдович Я. Б., ЖЭТФ, 33 (1957), 1531
- Gladyshev S., Frizyuk K., Bogdanov A., Phys. Rev. B, 102 (2020), 075103
- Wu T. et al., Phys. Rev. A, 101 (2020), 011803
- Lord Rayleigh F. R. S., Philos. Mag. 5, 44 (1897), 28
- Stevenson A. F., J. Appl. Phys., 24 (1953), 1134
- Stevenson A. F., J. Appl. Phys., 24 (1953), 1143
- van Bladel J., IEEE Trans. Microwave Theory Tech., 23 (1975), 199
- Mongia R. K., Bhartia P., Int. J. Microwave Millimeter-Wave Comput.-Aided Eng., 4 (1994), 230
- Brillouin L., J. Phys. Radium, 3 (1932), 373
- Muljarov E. A., Langbein W., Zimmermann R., Europhys. Lett., 92 (2010), 50010
- COMSOL
- Electromagnetic Systems Modeling. CST Studio Suite. Dassault Systèmes
- Bai Q. et al., Opt. Express, 21 (2013), 27371
- Yan W., Faggiani R., Lalanne P., Phys. Rev. B, 97 (2018), 205422
- Mie G., по новой нумерации Vol. 330, Ann. Physik, 25 (1908), 377
- Luk'yanchuk B. S. et al., J. Opt. A, 9 (2007), S294
- Tribelsky M. I., Luk'yanchuk B. S., Phys. Rev. Lett., 97 (2006), 263902
- Трибельский М. И., Мирошниченко А. Е., УФН, 192 (2022), 45
- Bashevoy M. V., Fedotov V. A., Zheludev N. I., Opt. Express, 13 (2005), 8372
- Noh H. et al., Phys. Rev. Lett., 108 (2012), 186805
- Proskurin A., Bogdanov A., Baranov D., Laser Photon. Rev., 15 (2021), 2000430
- Smythe W. R., Static and Dynamic Electricity, 3rd ed., McGraw-Hill, New York, 1968
- Guzatov D. V., Klimov V. V., Pikhota M., Laser Phys., 20 (2010), 85
- Guzatov D. V., Klimov V. V., Chem. Phys. Lett., 412 (2005), 341
- Hobson E. W., The Theory of Spherical and Ellipsoidal Harmonics, The Univ. Press, Cambridge, 1931
- Faggiani R. et al., ACS Photon., 4 (2017), 897
- Märsell E. et al., Nano Lett., 15 (2015), 6601
- Klimov V. V., Guzatov D. V., Phys. Rev. B, 75 (2007), 024303
- Климов В. В., УФН, 178 (2008), 875
- Klimov V. V., Guzatov D. V., Appl. Phys. A, 89 (2007), 305
- Nordlander P. et al., Nano Lett., 4 (2004), 899
- Prodan E., Nordlander P., J. Chem. Phys., 120 (2004), 5444
- Guzatov D. V., Klimov V. V., New J. Phys., 13 (2011), 053034
- Watson J. D. et al., Molecular Biology of the Gene, 7th ed., Pearson, Boston, 2014
- Pal S. et al., Angew. Chem., 122 (2010), 2760
- Zheng J. et al., Nano Lett., 6 (2006), 1502
- Kuzyk A. et al., Nature, 483 (2012), 311
- Mastroianni A. J., Claridge S. A., Alivisatos A. P., J. Am. Chem. Soc., 131 (2009), 8455
- Klein W. P. et al., Nano Lett., 13 (2013), 3850
- Ding B. et al., J. Am. Chem. Soc., 132 (2010), 3248
- Roller E.-M. et al., Nano Lett., 15 (2015), 1368
- Roller E.-M. et al., Nat. Phys., 13 (2017), 761
- Климов В. В., Шаронов Г. В., Квантовая электроника, 50 (2020), 237
- Many V. et al., Nanophotonics, 8 (2019), 549
- Ильченко М. Е. и др., Диэлектрические резонаторы, Под ред. М. Е. Ильченко, Радио и связь, М., 1989
- Luk K. M., Leung K. W. (Eds.), Dielectric Resonator Antennas, Antennas Series, 1st ed., Research Studies Press Ltd, Baldock, 2002
- Vahala K., Nature, 424 (2003), 839
- Kuznetsov A. I. et al., Science, 354 (2016), aag2472
- Sager O., Tisi F., Proc. IEEE, 56 (1968), 1593
- Gastine M., Courtois L., Dormann J. L., IEEE Trans. Microwave Theory Tech., 15 (1967), 694
- Martin R. J., Tatam R. P., J. Mod. Opt., 41 (1994), 1445
- Filonov D. S. et al., Appl. Phys. Lett., 100 (2012), 201113
- Kuznetsov A. I. et al., Sci. Rep., 2 (2012), 492
- Voshchinnikov N. V., Farafonov V. G., Astrophys. Space Sci., 204 (1993), 19
- Комаров И. В., Пономарев Л. И., Славянов С. Ю., Сфероидальные и кулоновские сфероидальные функции
- Lai H. M. et al., J. Opt. Soc. Am. B, 8 (1991), 1962
- Luk'yanchuk B. S. et al., ACS Photon., 2 (2015), 993
- Bulgakov E., Pichugin K., Sadreev A., Phys. Rev. A, 104 (2021), 053507
- Kishk A., Glisson A. W., Junker G. P., PIER, 33 (2001), 97
- Bulygin V. S. et al., “Axially symmetric modeling of dielectric pillbox resonators”, 2012 14th Intern. Conf. on Transparent Optical Networks, ICTON, IEEE, Piscataway, NJ, 2012
- Рыбин М. В., Лимонов М. Ф., УФН, 189 (2019), 881
- Krasikov S. et al., Phys. Rev. Appl., 15 (2021), 024052
- Ruan Z., Fan S., Phys. Rev. Lett., 105 (2010), 013901
- Qian C. et al., Phys. Rev. Lett., 122 (2019), 063901
- Qian C. et al., ACS Photon., 5 (2018), 1506
- Bulgakov E., Pichugin K., Sadreev A., Photonics, 8 (2021), 49
- Климов В. В., УФН, 189 (2019), 1131
- Lu Y. et al., Opto-Electron Adv., 5 (2022), 210014
- Веселаго В. Г., УФН, 92 (1967), 517
- Shelby R. A., Smith D. R., Schultz S., Science, 292 (2001), 77
- Shelby R. A. et al., Appl. Phys. Lett., 78 (2001), 489
- Ремнев М. А., Климов В. В., УФН, 188 (2018), 169
- Веселаго В. Г., УФН, 181 (2011), 1201
- Кильдишев А. В., Шалаев В. М., УФН, 181 (2011), 59
- Klimov V. V., Opt. Commun., 211 (2002), 183
- Климов В. В., УФН, 191 (2021), 1044
- Klimov V.
- Бокуть Б. В., Сердюков А. Н., Федоров Ф. И., Кристаллография, 15 (1970), 1002
- Lindell I. V. et al., Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994
- Pendry J. B., Science, 306 (2004), 1353
- Zhang S. et al., Phys. Rev. Lett., 102 (2009), 023901
- Dong J. et al., Opt. Express., 17 (2009), 14172
- Chiral metamaterials, US 8271241, B2, September 18, 2012
- Chiral metamaterials, US 8,271.241 B2. Google Patents
- Wongkasem N., Akyurtlu A., Marx K., PIER, 63 (2006), 295
- Klimov V. V., Guzatov D. V., Ducloy M., Europhys. Lett., 97 (2012), 47004
- Климов В. В., Гузатов Д. В., УФН, 182 (2012), 1130
- Bohren C. F., Chem. Phys. Lett., 29 (1974), 458
- Guzatov D. V., Klimov V. V., New J. Phys., 14 (2012), 123009
- Klimov V. V. et al., Opt. Express, 22 (2014), 18564
- Klimov V., Guzatov D., Singular and Chiral Nanoplasmonics, N. Zheludev, S. Boriskina, Pan Stanford Publ., Singapore, 2014, 121
- Guzatov D. V., Klimov V. V., Квантовая электроника, 45 (2015), 250
- Guzatov D. V. et al., Opt. Express, 25 (2017), 6036
- Wu C. et al., Phys. Rev. X, 4 (2014), 021015
- Давидович М. В., УФН, 189 (2019), 1249
- Roth J., Dignam M. J., J. Opt. Soc. Am., 63 (1973), 308
- Totero Gongora J. S. et al., Nat. Commun., 8 (2017), 15535
- Wan M. et al., Appl. Phys. Lett., 110 (2017), 031103
- Schwartz J. J., Stavrakis S., Quake S. R., Nat. Nanotechnol., 5 (2010), 127
- Staude I. et al., ACS Photon., 2 (2015), 172
- Krasnok A. E. et al., Laser Photon. Rev., 9 (2015), 385
- Ee H.-S. et al., Nano Lett., 15 (2015), 1759
- Singh M. et al., Nanoscale, 7 (2015), 1424
- Caldarola M. et al., Nat. Commun., 6 (2015), 7915
- Szenes A. et al., Sci. Rep., 7 (2017), 13845
- Elshaari A. W. et al., Nat. Photon., 14 (2020), 285
- Brongersma M. L., Cui Y., Fan S., Nat. Mater., 13 (2014), 451
- Kim S. J. et al., Nat. Commun., 6 (2015), 7591
- Sousa-Castillo A. et al., Nano Energy, 37 (2017), 118
- Lee K.-T. et al., Sci. Rep., 7 (2017), 10640
- Vismara R. et al., Opt. Express, 27 (2019), A967
- Garcia-Guirado J. et al., Nano Lett., 20 (2020), 585
- Yavas O. et al., Nano Lett., 17 (2017), 4421
- Bontempi N. et al., Nanoscale, 9 (2017), 4972
- Yang Y. et al., Nat. Commun., 16 (2014), 5753
- Tittl A. et al., Science, 360 (2018), 1105
- Rodionov S. A., Remnev M. A., Klimov V. V., Sens. Bio-Sens. Res., 22 (2019), 100263
- Klimov V. V. et al., J. Phys. D, 50 (2017), 285101
- Mariani S. et al., Opt. Lett., 39 (2014), 3062
- Kuo P. S., Bravo-Abad J., Solomon G. S., Nat. Commun., 5 (2014), 3109
- Gigli C. et al., Front. Phys., 7 (2019), 221
- Li G.-C. et al., Nat. Commun., 12 (2021), 4326
- Shcherbakov M. R. et al., Nano Lett., 14 (2014), 6488
- Grinblat G. et al., Nano Lett., 16 (2016), 4635
- Grinblat G. et al., ACS Nano, 11 (2017), 953
- Evlyukhin A. B. et al., Nano Lett., 12 (2012), 3749
- Staude I. et al., ACS Nano, 7 (2013), 7824
- Tonkaev P. et al., Appl. Phys. Lett., 118 (2021), 091104
Supplementary files
