Трициклический антидепрессант амитриптилин подавляет Са2+-ответы в перитонеальных макрофагах крысы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Амитриптилин относится к трициклическим антидепрессантам, широко используемым в клинической практике для терапии тревожно-депрессивных состояний и хронической боли. Эти препараты оказывают многогранное влияние на клеточные процессы. Одной из их мишеней служат рецепторы сигма-1 – молекулярные шапероны, расположенные в мембране эндоплазматического ретикулума. Им свойственны уникальная структура и фармакологический профиль. Рецепторы сигма-1 регулируют многие клеточные процессы в норме и патологии, в том числе процессы Ca2+-сигнализации. С использованием флуоресцентного Са2+-зонда Fura-2AM впервые показано, что агонист рецепторов сигма-1 антидепрессант амитриптилин существенно подавляет как мобилизацию Са2+ из внутриклеточных Са2+-депо, так и последующий депозависимый вход Са2+ в клетки, вызываемые ингибиторами эндоплазматических Са2+-АТФаз тапсигаргином и циклопьязониковой кислотой, а также дисульфидсодержащими иммуномодуляторами глутоксимом и моликсаном, в перитонеальных макрофагах крысы. Результаты указывают на участие рецепторов сигма-1 в вызываемом глутоксимом или моликсаном комплексном сигнальном каскаде, приводящем к увеличению внутриклеточной концентрации Са2+ в макрофагах. Данные свидетельствуют также об участии рецепторов сигма-1 в регуляции депозависимого входа Са2+ в макрофагах.

Полный текст

Доступ закрыт

Об авторах

Л. С. Миленина

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: l.milenina@spbu.ru

Кафедра биофизики

Россия, Санкт-Петербург, 199034

З. И. Крутецкая

Санкт-Петербургский государственный университет

Email: z.krutetskaya@spbu.ru

Кафедра биофизики 

Россия, Санкт-Петербург, 199034

В. Г. Антонов

Санкт-Петербургский государственный педиатрический медицинский университет

Email: l.milenina@spbu.ru

Кафедра биохимии

Россия, Санкт-Петербург, 194100

Н. И. Крутецкая

Санкт-Петербургский государственный университет

Email: l.milenina@spbu.ru

Кафедра биофизики

Россия, Санкт-Петербург, 199034

Список литературы

  1. Антушевич А.А., Антонов В.Г., Гребенюк А.Н., Антушевич А.Е., Ладанова Т.В., Бурова Е.Б. 2013. Патофизиологические основы эффективности глутоксима как средства сопровождения лучевой терапии рака ротоглотки. Вестник Рос. военно-мед. акад. Т. 3. № 43. С. 32. (Antushevich A.A., Antonov V.G., Grebenyuk A.N., Antushevich A.E., Ladanova T.V., Burova E.B. 2013. Pathophysiologic rationale of effectiveness of glutoxim supportive therapy add-on to radiotherapy management of oropharyngeal cancer. Vestnik Rossiiskoi Voenno-medicinskoi akademii. V. 3. № 43. P. 32.)
  2. Борисов А.Е., Кожемякин Л.А., Антушевич А.Е, Кетлицкая О.С., Кащенко В.А., Чепур С.В., Кацалуха В.В., Васюкова Е.Л., Новиченков А.О., Мотущук И.Е. 2001. Клинико-экспериментальное обоснование регионарного и системного введения препаратов группы тиопоэтинов при циррозе печени. Вестник хирургии им. И.И. Грекова. Т. 4. № 2. С. 32. (Borisov A.E., Kozhemyakin L.A., Antushevich A.E., Ketliskaya O.S., Kashchenko V.A., Chepur S.V., Katsalucha V.V., Vasyukova E.L., Novichenkov A.O., Motushchuk I.E. 2001. Clinical and experimental grounds of the regional and systemic administration of the thiopoetin group medicines for cirrhosis of the liver. First communication. Vestnic hirurgii im. I.I. Grekova. V. 4. № 2. P. 32.)
  3. Данилов Д.С. 2019. 70-летняя история трициклических антидепрессантов. Журнал неврологии и психиатрии им. С.С. Корсакова. Т. 119. № 12. С. 115. (Danilov D.S. 2019. 70-year history of tricyclic antidepressants. S.S. Korsakov. J. Neurol. Psychiatry. V. 119. № 12. P. 115.)
  4. Крутецкая З.И., Миленина Л.С., Наумова А.А., Бутов С.Н., Антонов В.Г., Ноздрачев А.Д. 2017. Антагонист рецепторов сигма-1 галоперидол подавляет Са2+-ответы в макрофагах, вызываемые глутоксимом и моликсаном. Доклады Академии наук. Т. 472. № 6. С. 723. (Krutetskaya Z.I., Milenina L.S., Naumova A.A., Butov S.N., Antonov V.G., Nozdrachev A.D. 2017. Sigma-1 receptor antagonist haloperidol attenuates Ca2+ responses induced by glutoxim and molixan in macrophages. Doklady Biochem. Biophys. V. 472. P. 74.)
  5. Крутецкая З.И., Миленина Л.С., Наумова А.А., Бутов С.Н., Антонов В.Г., Ноздрачев А.Д. 2018. Антагонист рецепторов сигма-1 галоперидол подавляет депо-зависимый вход Са2+ в макрофагах. Доклады Академии наук. Т. 480. № 5. С. 613. (Krutetskaya Z.I., Milenina L.S., Naumova A.A., Butov S.N., Antonov V.G., Nozdrachev A.D. 2018. Sigma-1 receptor antagonist haloperidol attenuates store-dependent Ca2+ entry in macrophages. Doklady Biochem. Biophys. V. 480. P. 162.)
  6. Курилова Л.С., Крутецкая З.И., Лебедев О.Е., Антонов В.Г. 2008. Влияние окисленного глутатиона и его фармакологического аналога препарата глутоксим на внутриклеточную концентрацию Са2+ в макрофагах. Цитология. Т. 50. № 5. С. 452. (Kurilova L.S., Krutetskaya Z.I., Lebedev O.E., Krutetskaya N.I., Antonov V.G. 2008. The effect of oxidized glutathione and its pharmacological analogue glutoxim on intracellular Са2+ concentration in macrophages. Cell Tiss. Biol. (Tsitologiya). V. 2. P. 322.)
  7. Курилова Л.С., Крутецкая З.И., Лебедев О.Е., Крутецкая Н.И., Антонов В.Г. 2012. Участие актинового цитоскелета в действии препаратов глутоксим и моликсан на внутриклеточную концентрацию Са2+ в макрофагах. Цитология. Т. 54. № 2. C. 135. (Kurilova L.S., Krutetskaya Z.I., Lebedev O.E., Krutetskaya N.I., Antonov V.G. 2012. The involvement of actin cytoskeleton in glutoxim and molixan effect on intracellular Ca2+ concentration in macrophages. Cell Tiss. Biol. (Tsitologiya). V. 6. № 3. P. 240.)
  8. Миленина Л.С., Крутецкая З.И., Антонов В.Г., Крутецкая Н.И. 2022. Лиганды рецепторов сигма-1 хлорпромазин и трифлуоперазин подавляют Са2+-ответы в перитонеальных макрофагах крысы. Цитология. Т. 64. № 1. С. 58. (Milenina L.S., Krutetskaya Z.I., Antonov V.G., Krutetskaya N.I. 2022. Sigma-1 receptor ligands chlorpromazine and trifluoperazine attenuate Ca2+ responses in rat peritoneal macrophages. Cell Tiss. Biol. (Tsitologiya). V. 16. № 3. P. 233.)
  9. Толстой О.А., Цыган В.Н., Климов А.Г., Степанов А.В., Антушевич А.Е. 2019. Экспериментальная оценка эффективности препарата моликсан по восстановлению работоспособности вирусинфицированных лабораторных животных. Известия Рос. военно-мед. акад. Т. 38. № 1. С. 271. (Tolstoy O.A., Tsygan V.N., Klimov A.G., Stepanov A.V., Antushevich A.E. 2019. Experimental evaluation of the efficiency of the drug molixan on restoring the operation of virus-infected laboratory animals. Bull. Russ. Military Med. Acad. V. 38. № 1. P. 271.)
  10. Aishwarya R., Abdullah C.S., Morshed M., Remex N.S., Bhuiyan M.S. 2021. Sigmar1’s molecular, cellular, and biological functions in regulating cellular pathophysiology. Front. Physiol. V. 12. Р. 705575. https://doi.org/10.3389/fphys.2021.705575
  11. Bang E., Tobery A., Montgomery K.S., Fincher A.S., Earnest D.J., Murchison D.A. Griffith W.H. 2021. Amitriptyline decreases GABAergic transmission in basal forebrain neurons using an optogenetic model of aging. Front. Aging Neurosci. V. 13. Р. 673155. https://doi.org/10.3389/fnagi.2021.673155
  12. Belinskaia D.A., Belinskaia M.A., Barygin O.I., Vanchakova N.P., Shestakova N.N. 2019. Psychotropic drugs for the management of chronic pain and itch. Pharmaceuticals. V. 12. Р. 99. https://doi.org/10.3390/ph12020099
  13. Berlansky S., Sallinger M., Grabmayr H., Humer C., Bernhard A., Fahrner M., Frischauf I. 2022. Calcium signals during SARS-CoV-2 infection: assessing the potential of emerging therapies. Cells. V. 11. Р. 253. https://doi.org/10.3390/cells11020253
  14. Bogár F., Fülöp L., Penke B. 2022. Novel therapeutic target for prevention of neurodegenerative diseases: modulation of neuroinflammation with Sig-1R ligands. Biomolecules. V. 12. Р. 363. https://doi.org/10.3390/biom12030363
  15. Brailoiu G.C., Deliu E., Console-Bram L.M., Soboloff J., Abood M.E., Unterwald E.M., Brailoiu E. 2016. Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochem. J. V. 473. P. 1.
  16. Cardoso F.C., Schmit M., Kuiper M.J., Lewi R.J., Tuck K.L., Duggan P.J. 2022. Inhibition of N-type calcium ion channels by tricyclic antidepressants – experimental and theoretical justification for their use for neuropathic pain. RSC Med. Chem. V. 13. P. 183.
  17. Carpinteiro A., Edwards M.J., Hoffmann M., Kochs G., Gripp B., Weigang S., Adams C., Carpinteiro E., Gulbins A., Keitsch S., Sehl C., Soddemann M., Wilker B., Kamler M., Bertsch T. et al. 2020. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep. Med. V. 1. Р. 100142. https://doi.org/10.1016/j.xcrm.2020.100142
  18. Chen X., Cao R., Zhong W. 2019. Host calcium channels and pumps in viral infections. Cells. V. 9. Р. 94. https://doi.org/10.3390/cells9010094
  19. Chu U.B., Ruoho A.E. 2016. Biochemical pharmacology of the sigma-1 receptor. Mol. Pharmacol. V. 89. P. 142.
  20. Cobos E.J., Entrena J.M., Nieto F.R., Cendán C.M., Del Pozo E. 2008. Pharmacology and therapeutic potential of sigma (1) receptor ligands. Curr. Neuropharmacol. V. 6. P. 344.
  21. Conrad R. E. 1981. Induction and collection of peritoneal exudate macrophages. In: Manual of macrophages methodology. New York: Marcell Dekker. P. 5.
  22. Cortés-Montero E., Sánchez-Blázquez P., Onetti Y., Merlos M., Garzón J. 2019. Ligands exert biased activity to regulate sigma 1 receptor interactions with cationic TRPA1, TRPV1 and TRPM8 channels. Front. Pharmacol. V. 10. Р. 634. https://doi.org/10.3389/fphar.2019.00634
  23. Delprat B., Crouzier L., Su T-P., Maurice T. 2020. At the crossing of ER stress and MAMs: A key role of sigma-1 receptor? Adv. Exp. Med. Biol. V. 1131. P. 699.
  24. Dubina M.V., Gomonova V.V., Taraskina A.E., Vasilyeva N.V., Sayganov S.A. 2021. Pathogenesis-based pre-exposure prophylaxis associated with low risk of SARS-CoV-2 infection in healthcare workers at a designated COVID-19 hospital: a pilot study. BMC Infect. Dis. V. 21. Р. 536. https://doi.org/10.1186/s12879-021-06241-1
  25. Fishback J.A., Robson M.J., Xu Y-T., Matsumoto R.R. 2010. Sigma receptors: potential targets for a new class of antidepressant drugs. Pharmacol. Ther. V. 127. P. 271.
  26. Fred S.M., Kuivanen S., Ugurlu H., Casarotto P.C., Levanov L., Saksela K., Vapalahti O., Castrén E. 2022. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine shows antiviral activity against the novel variants in vitro. Front. Pharmacol. V. 12. Р. 755600. https://doi.org/10.3389/fphar.2021.755600
  27. Gillman P.K. 2007. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br. J. Pharmacol. V. 151. P. 737.
  28. Gitahy Falcao Faria C., Weiner L., Petrignet J., Hingray C., Ruiz De Pellon Santamaria A., Villoutreix B.O., Beaune P., Leboyer M., Javelot H. 2021. Antihistamine and cationic amphiphilic drugs, old molecules as new tools against the COVID-19? Med. Hypotheses. V. 148. Р. 110508. https://doi.org/10.1016/j.mehy.2021.110508
  29. Glebov O.O. 2021. Low-dose fluvoxamine modulates endocytic trafficking of SARS-CoV-2 spike protein: A potential mechanism for anti-COVID-19 protection by antidepressants. Front. Pharmacol. V. 12. Р. 787261. https://doi.org/10.3389/fphar.2021.787261
  30. Gonzalez-Martinez A., Guerrero-Peral A.L., Arias-Rivas S., Silva L., Sierra A., Gago-Veiga A.B., Garcia-Azorin D. 2022. Amitriptyline for post-COVID headache: effectiveness, tolerability, and response predictors. J. Neurol. V. 269. P. 5702.
  31. Gordon D.E., Jang G.M., Bouhaddou M. Xu J., Obernier K., White K. M., O’Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H. et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. V. 583. P. 459.
  32. Grynkiewicz G., Poenie M., Tsien R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. V. 260. P. 3440.
  33. Harper J.L., Daly J.W. 1999. Inhibitors of store-operated calcium channels: imidazoles, phenothiazines, and other tricyclics. Drug Dev. Res. V. 47. P. 107.
  34. Hashimoto K. 2021. Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. Eur. Arch. Psychiatry Clin. Neurosci. V. 271. P. 249.
  35. Hashimoto Y., Suzuki T., Hashimoto K. 2021. Old drug fluvoxamine, new hope for COVID-19. Eur. Arch. Psychiatry Clin. Neurosci. V. 272. P. 161.
  36. Hashimoto Y., Suzuki T., Hashimoto K. 2022. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol. Psychiatry. V. 27. P. 1898.
  37. Hayashi T., Maurice T., Su T.-P. 2000. Ca2+ signaling via σ1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J. Pharmacol. Exper. Ther. V. 293. P. 788.
  38. Hayashi T., Su T.-P. 2007. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. V. 131. P. 596.
  39. Hayashi T., Tsai S.-Y., Mori T., Fujimoto M., Su T.-P. 2011. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin. Ther. Targets. V. 15. P. 557.
  40. Herrando-Grabulosa M., Gaja-Capdevila N., Vela J.M., Navarro X. 2020. Sigma 1 receptor as a therapeutic target for amyotrophic lateral sclerosis. Br. J. Pharmacol. V. 178. P. 1336.
  41. Hoertel N., Sánchez-Rico M., Vernet R., Beeker N., Jannot A.-S., Neuraz A., Salamanca E., Paris N., Daniel C., Gramfort A., Lemaitre G., Bernaux M., Bellamine A., Lemogne C., Airagnes G., et al. 2021. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol. Psychiatry. V. 26. P. 5199.
  42. Jamison D.A., Narayanan S.A., Trovão N.S., Guarnieri J.W., Topper M.J., Moraes-Vieira P.M., Zaksas V., Singh K.K., Wurtele E.S., Beheshti A. 2022. A comprehensive SARS-CoV-2 and COVID-19 review, part 1: intracellular overdrive for SARS-CoV-2 infection. Eur. J. Human Genetics. V. 30. P. 889.
  43. Jeong B., Sung T.S., Jeon D., Park K.J., Jun J.Y., So I., Hong Ch. 2022. Inhibition of TRPC4 channel activity in colonic myocytes by tricyclic antidepressants disrupts colonic motility causing constipation. J. Cell Mol. Med. V. 26. P. 4911.
  44. Kim F.J., Maher C.M. 2017. Sigma1 pharmacology in the context of cancer. Handb. Exp. Pharmacol. V. 244. P. 237.
  45. Kutkat O., Moatasim Y., Al-Karmalawy A.A., Abulkhair H.S., Gomaa M.R., El-Taweel A.N., Abo Shama N.M., GabAllah M., Mahmoud D.B., Kayali G., Ali M.A., Kandeil A., Mostafa A. 2022. Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies. Sci. Rep. V. 12. Р. 12920. https://doi.org/10.1038/s41598-022-17082-6
  46. Lachance V., Bélanger S.-M., Hay C., Le Corvec V., Banouvong V., Lapalme M., Tarmoun K., Beaucaire G., Lussier M.P., Kourrich S. 2023. Overview of sigma-1R subcellular specific biological functions and role in neuroprotection. Int. J. Mol. Sci. V. 24. P. 1971.
  47. Lavoie P.A., Beauchamp G., Elie R. 1990. Tricyclic antidepressants inhibit voltage-dependent calcium channels and Na(+)–Ca2+ exchange in rat brain cortex synaptosomes. Can. J. Physiol. Pharmacol. V. 68. P. 1414.
  48. Lawson K. 2017. A brief review of the pharmacology of amitriptyline and clinical outcomes in treating fibromyalgia. Biomedicines. V. 5. P. 24.
  49. Mahdi M., Hermán L., Réthelyi J.M., Bálint B.L. 2022. Potential role of the antidepressant’s fluoxetine and fluvoxamine in the treatment of COVID-19. Int. J. Mol. Sci. V. 23. P. 3812.
  50. Malar D.S., Thitilertdecha P., Ruckvongacheep K.S., Brimson S., Tencomnao T., Brimson J.M. 2023. Targeting sigma receptors for the treatment of neurodegenerative and neurodevelopmental disorders. CNS Drugs. V. 37. P. 399.
  51. Mas M., García-Vicente J.A., Estrada-Gelonch A., Pérez-Mañá C., Papaseit E., Torrens M., Farré M. 2022. Antidepressant drugs and COVID-19: a review of basic and clinical evidence. J. Clin. Med. V. 11. P. 4038.
  52. Merlos M., Burgueño J., Portillo-Salido E., Plata-Salamán C.R., Vela J.M. 2017a. Pharmacological modulation of the sigma 1 receptor and the treatment of pain. Adv. Exp. Med. Biol. V. 964. P. 85.
  53. Merlos M., Romero L., Zamanillo D., Plata-Salamán C., Vela J.M. 2017b. Sigma-1 receptor and pain. Handb. Exp. Pharmacol. V. 244. P. 131.
  54. Miller J., Bruen C., Schnaus M., Zhang J., Ali S., Lind A., Stoecker Z., Stauderman K., Hebbar S. 2020. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. Crit. Care. V. 24. Р. 502. https://doi.org/10.1186/s13054-020-03220-x
  55. Monahan R.A., Dvorak H.F., Dvorak A.M. 1981. Ultrastructural localization of nonspecific esterase activity in guinea pig and human monocytes, macrophages and lymphocytes. Blood. V. 58. P. 1089.
  56. Morales-Lázaro S.L., González-Ramírez R., Rosenbaum T. 2019. Molecular interplay between the sigma-1 receptor, steroids, and ion channels. Front. Pharmacol. V. 10. Р. 419. https://doi.org/10.3389/fphar.2019.00419
  57. Munguia-Galaviz F.J., Miranda-Diaz A.G., Cardenas-Sosa M.A., Echavarria R. 2023. Sigma-1 receptor signaling: in search of new therapeutic alternatives for cardiovascular and renal diseases. Int. J. Mol. Sci. V. 24. P. 1997.
  58. Narita N., Hashimoto K., Tomitaka S-I., Minabe Y. 1996. Interactions of selective serotonin reuptake inhibitors with subtypes of σ receptors in rat brain. Eur. J. Pharmacol. V. 307. P. 117.
  59. Ortiz-Renteria M., Juarez-Contreras R., Gonzalez-Ramirez R., Islas L.D., Sierra-Ramirez F., Llorente I., Simon S.A., Hiriart M., Rosenbaum T., Morales-Lázaro S.L. 2018. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain. Proc. Natl. Acad. Sci. USA. V. 115. P. E1657.
  60. Oruch R., Lund A., Pryme I.F., Holmsen H. 2010. An intercalation mechanism as a mode of action exerted by psychotropic drugs: results of altered phospholipid substrate availabilities in membranes? J. Chem. Biol. V. 3. P. 67.
  61. Penke B., Fulop L., Szucs M., Frecska E. 2018. The role of sigma-1 receptor, an intracellular chaperone in neurodegenerative diseases. Curr. Neuropharmacol. V. 16. P. 97.
  62. Pergolizzi J., Varrassi G., Coleman M., Frank Breve F., Christo D.K., Christo P.J., Moussa Ch. 2023. The sigma enigma: a narrative review of sigma receptors. Cureus. V. 15. Р. e35756.
  63. Pontisso I., Combettes L. 2021. Role of sigma-1 receptor in calcium modulation: possible involvement in cancer. Genes. V. 12. P. 139.
  64. Ren P., Wang J., Li N., Li G., Ma H., Zhao Y., Li Y. 2022. Sigma-1 receptors in depression: mechanism and therapeutic development. Front. Pharmacol. V. 13. Р. 925879. https://doi.org/10.3389/fphar.2022.925879
  65. Rico-Villademoros F., Slim M., Calandre E.P. 2015. Amitriptyline for the treatment of fibromyalgia: a comprehensive review. Expert. Rev. Neurother. V. 15. P. 1123.
  66. Rousseaux C.G., Greene S.F. 2016. Sigma receptors (σRs): biology in normal and diseased states. J. Recept. Signal Transduct. V. 36. P. 327.
  67. Ryskamp D.A., Korban S., Zhemkov V., Kraskovskaya N., Bezprozvanny I. 2019. Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front. Neurosci. V. 13. P. 862.
  68. Sałaciak K., Pytka K. 2022. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci. Biobehav. Rev. V. 132. P. 1114.
  69. Schmidt H.R., Kruse A.C. 2019. The molecular function of σ receptors: past, present, and future. Trends Pharmacol. Sci. V. 40. P. 636.
  70. Smith S. B., Wang J., Cui X., Mysona B.A., Zhao J., Bollinger K.E. 2018. Sigma 1 receptor: a novel therapeutic target in retinal disease. Prog. Retin Eye Res. V. 67. P. 130.
  71. Solaimanzadeh I. 2020. Nifedipine and amlodipine are associated with improved mortality and decreased risk for intubation and mechanical ventilation in elderly patients hospitalized for COVID-19. Cureus. V. 12. Р. e8069.
  72. Srivats S., Balasuriya D., Pasche M., Vistal G., Edwardson J.M., Taylor C.W., Murrell-Lagnado R.D. 2016. Sigma 1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J. Cell Biol. V. 213. P. 65.
  73. Stepanenko Y.D., Boikov S.I., Sibarov D.A., Abushik P.A., Vanchakova N.P., Belinskaia D., Shestakova N.N., Antonov S.M. 2019. Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Sci. Reports. V. 9. Р. 19454. https://doi.org/10.1038/s41598-019-56072-z
  74. Stepanenko Y.D., Sibarov D.A., Shestakova N.N., Antonov S.M. 2022. Tricyclic antidepressant structure-related alterations in calcium-dependent inhibition and open-channel block of NMDA receptors. Front. Pharmacol. V. 12. Р. 815368. https://doi.org/10.3389/fphar.2021.815368
  75. Su T.-P., Hayashi T., Maurice T., Buch S., Ruoho A.E. 2010. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol. Sci. V. 31. P. 557.
  76. Su T.-P., Su T.-C., Nakamura Y., Tsai S.-Y. 2016. The sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol. Sci. V. 37. P. 262.
  77. Sukhatme V.P., Reiersen A.M., Vayttaden S.J., Sukhatme V.V. 2021. Fluvoxamine: a review of its mechanism of action and its role in COVID-19. Front. Pharmacol. V. 12. Р. 652688. https://doi.org/10.3389/fphar.2021.652688
  78. Tchedre K.T., Huang R.Q., Dibas A., Krishnamoorthy R.R., Dillon G.H., Yorio T. 2008. Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Invest. Ophthalmol. Vis. Sci. V. 49. P. 4993.
  79. Tsai S-Y., Pokrass M.J., Klauer N.R., De Credico N.E., Su T-P. 2014. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin. Ther. Targets. V. 18. P. 1461.
  80. Vela J.M. 2020. Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front. Pharmacol. V. 11. Р. 582310. https://doi.org/10.3389/fphar.2020.582310
  81. Villard V., Meunier J., Chevallier N., Maurice T. 2011. Pharmacological interaction with the sigma1 (σ1)-receptor in the acute behavioral effects of antidepressants. J. Pharmacol. Sci. V. 115. P. 279.
  82. Voronin M.V., Vakhitova Y.V., Seredenin S.B. 2020. Chaperone Sigma1R and antidepressant effect. Int. J. Mol. Sci. V. 21. Р. 7088. https://doi.org/10.3390/ijms21197088
  83. Wang Y., Guo L., Jiang H-F., Zheng L-T., Zhang A., Zhen X.-C. 2016. Allosteric modulation of sigma-1 receptors elicits rapid antidepressant activity. CNS Neurosci. Therap. V. 22. P. 368.
  84. Wang Y-M., Xia C.-Y., Jia H-M., He J., Lian W-W., Yan Y., Wang W-P., Zhang W-K., Xu J-K. 2022. Sigma-1 receptor: a potential target for the development of antidepressants. Neurochem. International. V. 159. Р. 105390. https://doi.org/10.1016/j.neuint.2022.105390
  85. Weber E., Sonders M., Quarum M., McLean S., Pou S., Keana J.F.W. 1986. 1,3-Di(2-[5-3H]tolyl)guanidine: a selective ligand that labels sigma-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc. Natl. Acad. Sci. USA. V. 83. P. 8784.
  86. Werling L.L., Keller A., Frank J.G., Nuwayhid S.J. 2007. A comparison of the binding profiles of dextromethorphan, memantine, fluoxetine and amitriptyline: treatment of involuntary emotional expression disorder. Exp. Neurol. V. 207. P. 248.
  87. Wu Z., Bowen W.D. 2008. Role of sigma-1 receptor c-terminal segment in inositol 1,4,5-trisphosphate receptor activation. Constitutive enhancement of calcium signaling in mcf-7 tumor cells. J. Biol. Chem. V. 283. P. 28198.
  88. Wu W., Ye Q., Wang W., Yan L., Wang Q., Xiao H., Wan Q. 2012. Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neurosci. Lett. V. 506. P. 307.
  89. Xie Q., Zhang Y., Zhai C., Bonanno J.A. 2002. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J. Biol. Chem. V. 277. P. 16559.
  90. Yang K., Wang C., Sun T. 2019. The roles of intracellular chaperone proteins, sigma receptors, in Parkinson’s disease (PD) and major depressive disorder (MDD). Front. Pharmacol. V. 10. P. 528.
  91. Zahradník I., Minarovič I., Zahradníková A. 2008. Inhibition of the cardiac L-Type calcium channel current by antidepressant drugs. J. Pharmacol. Exper. Therap. V. 324. P. 977.
  92. Zhang H., Cuevas J. 2002. Sigma receptors inhibit high-voltage-activated calcium channels in rat sympathetic and parasympathetic neurons. J. Neurophysiol. V. 87. P. 2867.
  93. Zhang L.-K., Sun Y., Zeng H., Wang Q., Jiang X., Shang W-J., Wu Y., Li Sh., Zhang Y-L., Hao Z-N., Chen H., Jin R., Liu W., Li H., Peng K., Xiao G. 2020. Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discovery. V. 6. P. 96.
  94. Zhang K., Zhao Z., Lan L., Wei X., Wang L., Liu X., Yan H., Zheng J. 2017. Sigma-1 receptor plays a negative modulation on N-type calcium channel. Front. Pharmacol. V. 8. P. 302.
  95. Zhemkov V., Geva M., Hayden M.R., Bezprozvanny I. 2021. Sigma-1 receptor (S1R) interaction with cholesterol: mechanisms of S1R activation and its role in neurodegenerative diseases. Int. J. Mol. Sci. V. 22. P. 4082.
  96. Zheng W., Sun H-L., Cai H., Zhang Q., Ng C.H., Xiang Y-T. 2022. Antidepressants for COVID-19: a systematic review. J. Affective Disorders. V. 307. P. 108.
  97. Zhoua Y., Freyb T.K., Yanga J.J. 2009. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium. V. 46. P. 1.
  98. Zimniak M., Kirschner L., Hilpert H., Geiger N., Danov O., Oberwinkler H., Steinke M., Sewald K., Seibel J., Bodem J. 2021. The serotonin reuptake inhibitor fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci. Rep. V. 11. Р. 5890. https://doi.org/10.1038/s41598-021-85049-0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Влияние амитриптилина на увеличение [Ca2+]i, вызываемое глутоксимом в перитонеальных макрофагах крысы. Здесь и на рис. 2–4 по оси ординат – отношение интенсивностей флуоресценции Fura-2AM при длинах волн возбуждающего излучения 340 и 380 нм (F340/F380); а – макрофаги инкубировали в течение 20 мин в присутствии 100 мкг/мл глутоксима в номинально бескальциевой среде, затем вход Са2+ инициировали введением в наружную среду 2 мМ Са2+; на фоне развившегося входа Са2+ добавляли 40 мкг/мл амитриптилина; б – макрофаги, находящиеся в бескальциевой среде, инкубировали в течение 20 мин с 20 мкг/мл амитриптилина, затем добавляли 100 мкг/мл глутоксима, через 20 мин вход Са2+ инициировали введением в наружную среду 2 мМ Са2+. Здесь и на рис. 2–4 каждая регистрация получена для группы из 40–50 клеток и представляет собой типичный вариант из 6–8 независимых экспериментов.

Скачать (105KB)
3. Рис. 2. Влияние амитриптилина на увеличение [Ca2+]i, вызываемое моликсаном в перитонеальных макрофагах крысы: а – макрофаги инкубировали в течение 20 мин в присутствии 100 мкг/мл моликсана в номинально бескальциевой среде, затем вход Са2+ инициировали введением в наружную среду 2 мМ Са2+; на фоне развившегося входа Са2+ добавляли 40 мкг/мл амитриптилина; б – макрофаги, находящиеся в бескальциевой среде, инкубировали в течение 20 мин с 20 мкг/мл амитриптилина, затем добавляли 100 мкг/мл моликсана, через 20 мин вход Са2+ инициировали введением в наружную среду 2 мМ Са2+.

Скачать (107KB)
4. Рис. 3. Влияние амитриптилина на Са2+-ответы, индуцируемые тапсигаргином в перитонеальных макрофагах крысы: а – макрофаги стимулировали 0.5 мкМ тапсигаргина в номинально бескальциевой среде, затем вход Са2+ инициировали введением в наружную среду 2 мМ Са2+; на фоне развившегося входа Са2+ добавляли 40 мкг/мл амитриптилина; б – макрофаги предварительно инкубировали в течение 20 мин с 20 мкг/мл амитриптилина в бескальциевой среде, затем добавляли 0.5 мкМ тапсигаргина, после чего вход Са2+ инициировали введением в наружную среду 2 мМ Са2+.

Скачать (103KB)
5. Рис. 4. Влияние амитриптилина на Са2+-ответы, индуцируемые циклопьязониковой кислотой (ЦПК) в перитонеальных макрофагах крысы: а – макрофаги стимулировали 10 мкМ ЦПК в номинально бескальциевой среде, затем вход Са2+ инициировали введением в наружную среду 2 мМ Са2+; на фоне развившегося входа Са2+ добавляли 40 мкг/мл амитриптилина; б – макрофаги предварительно инкубировали в течение 20 мин с 20 мкг/мл амитриптилина в бескальциевой среде, затем добавляли 10 мкМ ЦПК, после чего вход Са2+ инициировали введением в наружную среду 2 мМ Са2+.

Скачать (99KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах