Перициты как необходимый клеточный элемент в Transwell-модели ГЭБ in vitro

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Цель настоящей работы заключалась в демонстрации преимущества четырехклеточной модели гематоэнцефалического барьера (ГЭБ) in vitro в сравнении с традиционной трехклеточной моделью, а также влияния перицитов на фенотип эндотелиальных клеток. В работе описан способ сокультивирования первичных эндотелиальных клеток микрососудов головного мозга, перицитов, астроцитов и нейронов в Tr-answell-модели ГЭБ in vitro. Проведен количественный анализ между показателями трансэндотелиального электрического сопротивления (ТЭС), а также между содержанием маркеров плотных контактов эндотелиальных клеток в трех- и четырехклеточной Transwel-моделях ГЭБ. Согласно полученным данным, присутствие перицитов сопровождается более высокими показателями ТЭС и более высоким содержанием белков плотных контактов. Представленные результаты согласуются с мировой научной литературой и подтверждают гипотезу о том, что перициты выполняют не только опорную функцию для эндотелиальных клеток, но и являются важным метаболическим звеном, регулирующим барьерные функции ГЭБ. Таким образом, сокультивирование клеток нейроваскулярной единицы (НВЕ) головного мозга с перицитами необходимо для формирования у эндотелиальных клеток фенотипа, приближенного к условиям в микроокружении НВЕ in vivo.

Об авторах

А. И. Мосягина

Научно-исследовательский институт молекулярной медицины и патобиохимии Красноярского государственного медицинского университета им. профессора В.Ф. Войно-Ясенецкого

Автор, ответственный за переписку.
Email: angelina.mosiagina@gmail.com
Россия, 660022, Красноярск

Е. Д. Хилажева

Научно-исследовательский институт молекулярной медицины и патобиохимии Красноярского государственного медицинского университета им. профессора В.Ф. Войно-Ясенецкого

Email: angelina.mosiagina@gmail.com
Россия, 660022, Красноярск

А. В. Моргун

Научно-исследовательский институт молекулярной медицины и патобиохимии Красноярского государственного медицинского университета им. профессора В.Ф. Войно-Ясенецкого

Email: angelina.mosiagina@gmail.com
Россия, 660022, Красноярск

Список литературы

  1. Хилажева Е.Д., Бойцова Е.Б., Пожиленкова Е.А., Солончук Ю.Р., Салмина А.Б. 2015. Получение трехклеточной модели нейроваскулярной единицы in vitro. Цитология. Т. 57. № 10. С. 710. (Khilazheva E.D., Boytsova E.B., Pozhilenkova E.A., Solonchuk Yu.R., Salmina A.B. 2015. The model of neurovascular unit in vitro consisting of three cells types. Cell Tiss. Biol. (Tsitologiya). V. 57. № 10. Р. 710.)
  2. Crouch E.E., Doetsch F. 2018. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc. V. 13. P. 738. https://doi.org/10.1038/nprot.2017.158
  3. Hatherell K., Couraud P.-O., Romero I.A., Weksler B., Pilkington G.J. 2011. Development of a three-dimensional, all-human in vitro model of the blood−brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods. V. 199. P. 223. https://doi.org/10.1016/j.jneumeth.2011.05.012
  4. Liu Y., Xue Q., Tang Q., Hou M., Qi H., Chen G., Chen W., Zhang J., Chen Y., Xu X. 2013. A simple method for isolating and culturing the rat brain microvascular endothelial cells. Microvasc. Res. V. 90. P. 199. https://doi.org/10.1016/j.mvr.2013.08.00
  5. Nortley R., Korte N., Izquierdo P., Hirunpattarasilp C., Mishra A., Jaunmuktane Z., Kyrargyri V., Pfeiffer T., Khennouf L., Madry C., Gong H., Richard-Loendt A., Huang W., Saito T., Saido T.C. et al. 2019. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science. V. 365. Article no. eaav9518. https://doi.org/10.1126/science.aav9518
  6. Nzou G., Wicks R.T., Wicks E.E., Seale S.A., Sane C.H., Chen A., Murphy S.V., Jackson J.D., Atala A.J. 2018. Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci. Rep. V. 8. P. 7413. https://doi.org/10.1038/s41598-018-25603-5
  7. Shin Y., Choi S.H., Kim E., Bylykbashi E., Kim J.A., Chung S., Kim D.Y., Kamm R.D., Tanzi R.E. 2019. blood–brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv. Sci. V. 6. P. 1900962. https://doi.org/10.1002/advs.201900962
  8. Srinivasan B., Kolli A.R. 2019. Transepithelial/transendothelial electrical resistance (TEER) to measure the integrity of blood−brain barrier. blood−brain barrier. Neuromethods. N.Y.: Humana Press. P. 142. https://doi.org/10.1007/978-1-4939-8946-1_6
  9. Stone N.L., England T.J., O’Sullivan S.E. 2019. A novel transwell blood brain barrier model using primary human cells. Front. Cell Neurosci. V. 13. P. 230. https://doi.org/10.3389/fncel.2019.00230
  10. Sweeney M.D., Ayyadurai S., Zlokovic B.V. 2016. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. V. 19. P. 771. https://doi.org/10.1038/nn.4288
  11. Yang S., Jin H., Zhu Y., Wan Y., Opoku E.N., Zhu L., Hu B. 2017. Diverse functions and mechanisms of pericytes in ischemic stroke. Curr. Neuropharmacol. V. 15. P. 892. https://doi.org/10.2174/1570159X15666170112170226

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (102KB)
4.

Скачать (40KB)

© А.И. Мосягина, Е.Д. Хилажева, А.В. Моргун, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах