A study of the relationship of the dynamics of development and characteristics of chimerism with manifestations of graft-vs.-host disease in the organs of mice after allogeneic transplantation of whole bone marrow

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the сlinical practice, allogeneiс bone marrow transplantation (BMT) is often cause of the graft-versus-host disease (GvHD). GvHD is explained by the fact that T-lymphocytes, which are administered simultaneously with hematopoietic cells during transplantation and after then formed and matured in the timus of the recipient from donor progenitor cells, recognize and attack the cells of the host. However, a complete explanation of the phenomenon of the GvHD does not exists, and the chimerization of the recipient’s organism as a possible cause of damage of its organs is not taken into account. Therefore, the aim of this work was the modeling of allogeneic transplantation of the whole bone marrow (BM, experiment) and comparing its results with syngeneic transplantation (control) basing on the investigation of engraftment of cells of donor origin in the main GvHD target organs. Bone marrow (BM) donors were Tg(ACTB-EGFP)1Osb/J mice carrying a green fluorescent protein gene (EGFP), recipients were the animal of CBA and C57BL/6 inbred strains with age 2–10 months. 1 day before BMT (1.5×107 cells per mouse) all recipients were irradiated at a dose of 6.5 Gy (LD 50/30). After 1, 3, 5, 7, 11, 14, 21, 28, 35 and 55 days the development of chimerism in the liver, skin and colon of animals was examined using a fluorescent microscope. Already in 1 day, single fibroblast-like donor cells were found in the colon, in 7 days – in the skin and liver. 14–28 days after BMT, with donor cells mainly stroma in the liver, in the skin fibroblasts and keratinocytes were formed, in the colon villous cells and also stromal and parenchymal cells of Peyer’s patches which were died off after irradiation were substituted. Unlike control, in the experimental groups GFP+ giant fibroblasts about 30 mkm in length were found in the stroma of the liver, in the skin and in the colon; in the liver there was a lot of GFP+-bulkheads and fibroblast-like Ito’s cells of a very intricate configuration. To 35–55 days after allogeneic BMT cells of the donor origin in the liver and in the villi of the colon began to destroy, the villi became overgrown with GFP+-connective tissue cells and warped, wall of the colon became thin and the skin was fully substituted with a new one (all these things were never observed in the conrol groups). We propose a hypothesis that beside with GvHD traits like thinning of the colon wall and plenty of roundish GFP+-cells on inner surface of the skin, other signs of the studied after allogeneic BMT organs suggest that the cells of the organs which are formed from mesenchymal stem cells of the whole bone marrow become target for the recipient’s T-cells, i.e. suggest existence of host-versus-graft (HVG) reaction. Obvious manifestation of immune reactions after BMT directly coincides with the term of massive engraftment of the studied organs with cells of donor origin and restoration of the host’s own immune system, i.e. the development of chimerism determines the development of organ damage. This explains the events of GvHD from medical practice – atrophy of the mucous membranes, excess production of collagen, sclerosis of the bile ducts, skin damage, colitis – and the timing of its manifestation.

Texto integral

Acesso é fechado

Sobre autores

E. Bogdanenko

Institute of General Pathology and Pathophysiology

Autor responsável pela correspondência
Email: lenabogdval@mail.ru
Rússia, Moscow, 125315

L. Sergievich

Institute of Cell Biophysics Russian Academy of Sciences

Email: lenabogdval@mail.ru
Rússia, Pushchino, Moscow reg., 142290

A. Karnaukhov

Institute of Cell Biophysics Russian Academy of Sciences

Email: lenabogdval@mail.ru
Rússia, Pushchino, Moscow reg., 142290

N. Karnaukhova

Institute of Cell Biophysics Russian Academy of Sciences

Email: lenabogdval@mail.ru
Rússia, Pushchino, Moscow reg., 142290

I. Lizunova

Institute of Cell Biophysics Russian Academy of Sciences

Email: lenabogdval@mail.ru
Rússia, Pushchino, Moscow reg., 142290

Bibliografia

  1. Бландова З.К., Душкин В.А., Малашенко А.М., Шмидт Е.Ф. 1983. Линии лабораторных животных для медико-биологических исследований. М.: Наука. (Blandova Z.K., Dushkin V.A., Malashenko A.M., Shmidt Ye.F. 1983. Linii laboratornykh zhivotnykh dlya mediko-biologicheskikh issledovaniy. M.: Nauka.)
  2. Богданенко Е.В., Cеpгиевич Л.А., Каpнауxов А.В., Каpнауxова Н.А., Лизунова И.А. 2021. Выживаемость и устойчивость химеризма крови у мышей линии СВА после трансплантации костного мозга от доноров различного происхождения, несущих ген EGFP. Патогенез. Т. 19. № 4. C. 30 (Bogdanenko E.V., Sergievich L.A., Karnaukhov A.V., Karnaukhova N.A., Lizunova I.A. 2021. Survival and stability of blood chimerism in CBA mice after bone marrow transplantation from donors of various origin carrying the EGFP gene. Patogenez. V. 19. No. 4. Р. 30.)
  3. Богданенко Е.В., Cеpгиевич Л.А., Каpнауxов А.В., Каpнауxова Н.А., Лизунова И.А. 2022. Исследование распределения донорских клеток при заживлении резаных ран после аллогенной и сингенной безоблучательной трансплантации цельного костного мозга с использованием мышей, несущих ген EGFP. Патогенез Т. 20. № 4. C. 69. (Bogdanenko E.V., Sergievich L.A., Karnaukhov A.V., Karnaukhova N.A., Lizunova I.A. 2022. The distribution of donor cells during healing of incised wounds after allogeneic and syngeneic transplantation of whole bone marrow without irradiation, using mice carrying the EGFP gene. Patogenez. V. 20. № 4. Р. 69.)
  4. Богданенко Е.В., Cеpгиевич Л.А., Каpнауxов А.В., Каpнауxова Н.А., Лизунова И.А., Каpнауxов В.Н. 2020. Изучение регенеративного потенциала стволовых клеток цельного костного мозга для лечения механических травм кожи в модельных экспериментах на мышах. Патол. физиол. и экспер. терапия. Т. 64. № 1. С. 31. (Bogdanenko E.V., Sergievich L.A., Karnaukhov A.V., Karnaukhova N.A., Lizunova I.A., Karnaukhov V.N. 2020. The regenerative potential of stem cells from the whole bone marrow for the treatment of skin mechanical trauma in a murine model. Patol. fiziol. i eksper. terapiya (Pathol. Physiol. Exper. Ther.). V. 64. No. 1. Р. 31.)
  5. Богданенко Е.В., Cеpгиевич Л.А., Каpнауxов А.В., Каpнауxова Н.А., Лизунова И.А. 2022. Исследование распределения донорских клеток при заживлении резаных ран после аллогенной и сингенной безоблучательной трансплантации цельного костного мозга с использованием мышей, несущих ген EGFP. Патогенез Т. 20. № 4. C. 69. (Bogdanenko E.V., Sergievich L.A., Karnaukhov A.V., Karnaukhova N.A., Lizunova I.A. 2022. The distribution of donor cells during healing of incised wounds after allogeneic and syngeneic transplantation of whole bone marrow without irradiation, using mice carrying the EGFP gene. Patogenez. V. 20. № 4. Р. 69.)
  6. Миллер Т.В., Повещенко А.Ф., Лыков А.П., Повещенко О.В., Бондаренко Н.А., Петровская И.Ф., Завьялов Е.Л., Дементьева Е.В., Захарова И.С., Грицык О.Б., Шурлыгина А.В., Коненков В.И. 2016. Сравнительный анализ миграционной активности популяций клеток костного мозга в лимфоидные и нелимфоидные органы в норме и на модели сахарного диабета. Современные проблемы науки и образования. № 2. С. 137. (Miller T.V., Poveshchenko A.F., Lykov A.P., Poveshchenko O.V., Bondarenko N.A., Petrovskaya I.F., Zavjalov E.L., Dementyeva E.V., Zakharova I.S., Gritsyk O.B., Shurlygina A.V., Konenkov V.I. 2016. Comparative analysis of the migratory activity of populations of bone marrow cells in lymphoid and non- lymphoid organs in norm and in experimental models of diabetes. Sovremennyye problemy nauki i obrazovaniya. No. 2. Р. 137.)
  7. Сергиевич Л.А., Богданенко Е.В., Каpнауxов А.В., Каpнауxова Н.А., Лизунова И.А. 2021. Флуоресцентная визуализация динамики распределения GFP+-клеток донора в органах мышей после трансплантации нативного или криоконсервированного костного мозга. Цитология. Т. 63. № 6. С. 568. (Sergievich L.A., Bogdanenko E.V., Karnaukhov A.V., Karnaukhova N.A., Lizunova I.A. Fluorescent visualization of the dynamics of donor GFP+-cells distribution in mouse organs after native or cryopreserved bone marrow transplantation. Tsitologiya. V. 63. No. 6. Р. 568.)
  8. Цуцаева А.А., Гольцев А.Н., Попов Н.Н., Останкова Л.В., Лобасенко Н.П., Микулинский Ю.Е. 1988. Криоиммунология. Киев: Наукова думка. (Tsutsaeva A.A., Goltsev A.N.,Popov N.N., Ostankova L.V., Lobasenko N.P., Mikulinsk Yu.E. 1988. Krioimmunologiya. Kiev: Naukova dumka.)
  9. Blazar B.R., Murphy W.J., Abedi M. 2012. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. V. 12. Р. 443.
  10. Brandon J.A., Perez J., Jennings C.D., Cohen D.A, Sindhava V.J., Bondada S., Kaplan A.M., Bryson J.S. 2010. Association between chronic liver and colon inflammation during the development of murine syngeneic graft-versus-host disease. Am. J. Physiol. Gastrointest. Liver Physiol. V. 299. № 3. Р. G602.
  11. Brittan M., Chance V., Elia G., Poulsom R., Alison M.R., MacDonald T., Wright N.A. 2005. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterol. V. 128. Р. 1984.
  12. Brittan M., Hunt T., Jeffery R., Poulsom R., Forbes S.J., Hodivala-Dilke K., Goldman J., Alison M.R., Wright N.A. 2002. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut. V. 50. Р. 752. https://doi.org/10.1136/gut.50.6.752
  13. Brubaker D.B. 1993. Immunopathogenic mechanisms of posttransfusion graft-vs-host disease. Proc. Soc. Exp. Biol. Med. V. 202. Р. 122.
  14. Caplan A.I. 2013. Adult mesenchymal stem cells and the NO pathways. Proc. Natl. Acad. Sci. USA. V. 110. Р. 2695. https://doi.org/10.1073/pnas.1221406110
  15. Chao N.J., Blume K.G. 1989. Bone marrow transplantation. Part I – Allogeneic. West J. Med. V. 151. Р. 638.
  16. Chalfie M. 1995. Green fluorescent protein. Photochem. Photobiol. V. 62. Р. 651.
  17. Ch’ang H.-J., Lin L.-M., Pu-Yuan C., Chi-Wen L., Ya-Hui C., Chou C.-K., Chen H.H. 2012. Bone marrow transplantation enhances trafficking of host-derived myelomonocytic cells that rescue intestinal mucosa after whole body radiation. Radiother. Oncol. V. 104. Р. 401.
  18. Chen X., McClurg A., Zhou G.Q., McCaigue M., Armstrong M.A., Li G. 2007. Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules. Stem Cells. V. 25. Р. 364.
  19. Gorin N.-C., Labopin M., Boiron J.-M., Theorin N., Littlewood T., Slavin S., Greinix H., Cahn J.Y., Alessandrino E.P., Rambaldi A., Nagler A., Polge E., Rocha V. 2006. Results of genoidentical hemopoietic stem cell transplantation with reduced intensity conditioning for acute myelocytic leukemia: higher doses of stem cells infused benefit patients receiving transplants in second remission or beyond – the acute leukemia working party of the European cooperative group for blood and marrow transplantation. Clin. Oncol. V. 24. Р. 3959.
  20. Divito S.J., Aasebo A.T., Matos T.R., Hsieh P.-C., Collin M., Elco C.P., O’Malley T., Bækkevold E.S., Reims H., Gedde-Dahl T., Hagerstrom M., Hilaire J., Lian J.W., Milford E.L., Pinkus G.S. et al. 2020. Peripheral host T cells survive hematopoietic stem cell transplantation and promote graft-versus-host disease. J. Clin. Invest. V. 130. Р. 4624.
  21. Dzierzak-Mietla M., Markiewicz M., Siekiera U., Mizia S., Koclega A., Zielinska P., Sobczyk-Kruszelnicka M., Kyrcz-Krzemien S. 2012. Antigens’ disparities on outcomes of hematopoietic stem сell. Transplantation from HLA-matched sibling donors. Bone Marrow Res. https://doi.org/10.1155/2012/257086
  22. Dubnyak D.S., Kuzmina L.A., Drokov M.Y., Petinati N.A., Drize N.J., Vasilyeva V.V., Koroleva O.M., Mikhaltsova E.D., Popova N.N., Parovichnikova E.N., Savchenko V.G. 2016. Treatment of refractory intestinal acute GvHD using multipotent mesenchymal stromal cells (MMSC). Cell. Ther. Transplant. V. 5. Р. 34. https://doi.org/10.18620/ctt-1866-8836-2016-5-3-34-36
  23. Egawa G., Kabashima K. 2018. A study to detect bone marrow-derived keratinocyte: negative evidence of direct differentiation from bone-marrow cells to keratinocytes in normal and wounded skin using keratin 5-specific reporter mice. J. Invest. Dermatol. V. 138. Р. 1228. https://doi.org/10.1016/j.jid.2017.12.032
  24. Eichwald E.J., Lustgraaf E.C., Weissman I., Strainer M. 1958. Attempts to demonstrate sex-linked histocompatibility genes. Transplant. Bull. V. 5. Р. 387. https://doi.org/10.1097/00006534-195810000-00036
  25. Ferrara J.L., Levine J.E., Reddy P. Holler E. 2009. Graft-versus-host disease. Lancet. V. 373. Р. 1550.
  26. Filip S., Mokrý J., Vávrová J., Sinkorová Z., Mičuda S., Sponer P., Filipová A., Hrebíková H., Dayanithin G. 2014. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice. J. Cell Mol. Med. V. 18. № 5. P. 832. https://doi.org/10.1111/jcmm.12227
  27. Francois S., Mouiseddine M., Allenet-Lepage B., Voswinkel J., Douay L., Benderitter M., Chapel A. 2013. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed. Res. Int. https://doi.org/10.1155/2013/151679
  28. Fujita Y., Abe R., Inokuma D., Sasaki M., Hoshina D., Natsuga K., Nishie W., McMillan J.R., Nakamura H., Shimizu T., Akiyama M., Sawamura D., Shimizu H. 2010. Bone marrow transplantation restores epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice. PNAS. V. 107. Р. 14347. https://doi.org/10.1073/pnas.1000044107
  29. Garvy B.A., Elia J.M., Hamilton B.L., Riley R.L. 1993. Suppression of B-cell development as a result of selective expansion of donor T cells during the minor H antigen graft-versus-host reaction. Blood. V. 82. Р. 2758.
  30. Harris R.G., Herzog E.L., Bruscia E.M., Grove J.E., Van Arnam J.S., Krause D.S. 2004. Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. V. 305. Р. 90.
  31. Hünefeld C., Mezger M., Müller-Hermelink E., Schaller M., Müller I., Amagai M., Handgretinger R., Röcken M.J. 2018. Marrow-derived stem cells migrate into intraepidermal skin defects of a desmoglein-3 knockout mouse model but preserve their mesodermal differentiation. J. Invest. Dermatol. V. 138. Р. 1157. https://doi.org/10.1016/j.jid.2017.10.035
  32. Iredale J.P. 2001. Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. V. 3. P. 427. https://doi.org/10.1055/s-2001-17557.
  33. Kanazawa Y., Verma I. 2003. Little evidence of bone marrow-derived hepatocytes in the replacement of injured liver. PNAS. V. 100. Suppl. 1. Р. 11850.
  34. Körbling M., Katz R.L., Khanna A., Ruifrok A.C., Rondon G., Albitar M., Champlin R.E., Estrov Z. 2002. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N. Engl. J. Med. V. 346. Р. 738. https://doi.org/10.1056/NEJMoa3461002
  35. Krause D.S. 2002. Plasticity of marrow-derived stem cells. Gene Ther. V. 9. Р. 754
  36. Lin Y., Hu X., Cheng H., Pang Y., Wang L., Zou L., Xu S., Zhuang X., Jiang C., Yuan W., Cheng T., Wang J. 2014. Graft-versus-host disease causes broad suppression of hematopoietic primitive cells and blocks megakaryocyte differentiation in a murine model. Biol. Blood Marrow Transplant. V. 20. Р. 1290.
  37. Lin Z., Tang X., Wan J., Zhang X., Liu C., Liu T. 2021. Functions and mechanisms of circular RNAs in regulating stem cell differentiation. RNA Biol. V. 18. Р. 2136.
  38. Liu H., Kemeny D.M., Heng B.C., Ouyang H.W., Melendez A.J., Cao T. 2006. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J. Immunol. V. 176. Р. 2864.
  39. Lohan P., Coleman C.M., Murphy J.M., Griffin M.D., Ritter T., Ryan A.E. 2014. Changes in immunological profile of allogeneic mesenchymal stem cells after differentiation:should we be concerned? Stem Cell Res. Ther. V. 5. Р. 99.
  40. Lohan P., Treacy O., Griffin M.D., Ritter T., Ryan A.E. 2017. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: are we still learning? Front. Immunol. V. 8. Р. 1626.
  41. Martínez-Jaramillo G., Gómez-Morales E., Sánchez-Valle E., Mayani H. 2001. Severe hematopoietic alterations in vitro, in bone marrow transplant recipients who develop graft-versus-host disease. J. Hematother. Stem Cell Res. V. 10. Р. 347.
  42. Mohammadi N., Mardomi A., Hassannia H., Enderami S.E., Ranjbaran H., Rafiei A., Abediankenari S. 2020. Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiol. V. 225. Р. 157994. https://doi.org/10.1016/j.imbio.2020.151994
  43. Moreno D.F., Cid J. 2019. Graft-versus-host disease. Med. Clin. (Barc). V. 152. Р. 22. https://doi.org/10.1016/j.medcli.2018.07.012
  44. Müskens K.F., Lindemans C.A., Belderbos M.E. 2021. Hematopoietic dysfunction during graft-versus-host disease: a self-destructive process? Cells. V. 10. Р. 2051.
  45. Okabe M., Ikawa M., Kominami K., Nakanishi T., Nishimune Y. 1997. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. V. 407. Р. 313.
  46. Okamoto R., Yajima T., Yamazaki M, Kanai T, Mukai M., Okamoto S., Ikeda Y., Hibi T., Inazawa J., Watanabe M. 2002. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat. Med. V. 8. Р. 1011. https://doi.org/10.1038/nm755
  47. Popli R., Sahaf B., Nakasone H., Lee J.Y.Y., Miklos D.B. 2014. Clinical impact of H-Y alloimmunity. Immunol. Res. V. 58. Р. 249. https://doi.org/10.1007/s12026-014-8514-3
  48. Rea S., Giles N.L., Webb S., Adcroft K.F., Evill L.M., Strickland D.H., Wood F.M., Fear M.W. 2009. Bone marrow-derived cells in the healing burn wound—More than just inflammation. Burns. V. 35. Р. 356. https://doi.org/10.1016/j.burns.2008.07.011
  49. Rodriguez-Menocal L., Shareef S., Salgado M., Shabbir A., Van Badiavas E. 2015. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem Cell Res. Ther. V. 6. Р. 24. https://doi.org/10.1186/s13287-015-0001-9
  50. Shono Y., Ueha S., Wang Y., Abe J., Kurachi M., Matsuno Y., Sugiyama,T., Nagasawa T., Imamura M., Matsushima K. 2010. Bone marrow graft-versus-host disease: Early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood. V. 115. Р. 5401.
  51. Suratt B.T., Cool C.D., Serls A.E., Chen L., Varella-Garcia M., Shpall E.J., Brown K.K., Worthen G.S. 2003. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am. J. Respir. Crit. Care Med. V. 168. Р. 318. http://dx.doi.org/10.1164/rccm.200301-145OC
  52. Tee B.C., Sun Z. 2020. Xenogeneic mesenchymal stem cell transplantation for mandibular defect regeneration. Xenotransplantation. V. 27. Р. e12625. https://doi.org/10.1111/xen.12625
  53. Tolar J., Wagner J.E. 2013. Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet. V. 382. Р. 1214. https://doi.org/10.1016/S0140-6736(13)61897-8
  54. Tran S.D., Pillemer S.R., Dutra A., Barrett A.J., Brownstein M.J., Key S., Pak E., Leakan R.A., Kingman A., Yamada K.M., Baum B.J., Mezey E. 2003. Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet. V. 361. Р. 1084. http://dx.doi. org/10.1016/S0140-6736(03)12894-2
  55. Van der Torren C.R., van Hensbergen Y., Luther S., Aghai1 Z., Stachová Rychnavská Z., Slot M., Scherjon S., Kröger N., Ganser A., Weissinger E.M., Goulmy E., Hambach L. 2015. Possible role of minor H antigens in the persistence of donor chimerism after stem cell transplantation; relevance for sustained leukemia remission. PLoS One. V. 10. Р. e0119595. https://doi.org/10.1371/journal.pone.0119595
  56. Van Dijken P.J., Wimperis J., Crawford J.M., Ferrara J.L.M. 1991. Effect of graft-versus-host disease on hematopoiesis after bone marrow transplantation in mice. Blood. V. 78. Р. 2773.
  57. Vossen J. 1998. Allogeneic bone marrow transplantation: relation between chimaerism and immunity. Verh. K. Acad. Geneeskd. Belg. V. 60. Р. 111. Discussion 143.
  58. Waterhouse M., Pennisi S., Pfeifer D., Deuter M., von Bubnoff N., Scherer F., Strüssmann T., Wehr C., Duyster J., Bertz H., Finke J., Duque-Afonso J. 2021. Colon and liver tissue damage detection using methylated SESN3 and PTK2B genes in circulating cell-free DNA in patients with acute graft-versus-host disease. Bone Marrow Transplant. V. 56. Р. 327.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Chimerization of skin with differentiation of donor cells: a – keratinocytes with nuclei (parakeratosis) in the stratum corneum 21 days after syngeneic bone marrow transplantation (BMT); b – a single keratinocyte deep in the skin on the inner side (dyskeratosis) 28 days after allogeneic BMT (arrow); c – outer side of new skin with many fluorescent cells 35 days after allogeneic BMT; d – fluorescent collagen strands, acellular mass and keratinocytes with nuclei in exfoliated dead skin 35 days after allogeneic BMT from the inside. Arrow 1 indicates a keratinocyte, arrow 2 indicates collagen strands; e – many GFP+ fibroblasts and keratinocytes 55 days after syngeneic BMT from the outside; e – dozens of round GFP+ cells and single fibroblasts from the inside 35 days after syngeneic BMT. Arrows indicate fibroblasts. Scale bar: 50 µm. Uv. volume: 20×.

Baixar (305KB)
3. Fig. 2. Chimerization of the liver and spleen with differentiation of donor cells: a – GFP+ cells of irregular shape and triangular in the liver 1 day after allogeneic BMT; b – GFP+ structures from Ito cells in the liver in the form of vortices, rings and rays 35 days after allogeneic BMT; c, d – GFP+ megakaryocyte in the liver and spleen, respectively, 55 days after allogeneic BMT; e – hepatocyte of donor origin 35 days after syngeneic BMT; f – GFP+ hepatocytes (1) next to a GFP+ Ito cell of donor origin (2) 28 days after allogeneic BMT. Scale bar: 50 µm. Uv. volume: 40× (a, c–f), 10× (b).

Baixar (260KB)
4. Fig. 3. Chimerization of the rectum with differentiation of donor cells: a – GFP+ fibroblasts of normal size 14 days later on the outer side of the intestine (in the muscle layer) after syngeneic BMT; b – GFP+ fibroblasts of giant size with branches on the outer side of the intestine (in the muscle layer) 14 days after allogeneic BMT; c – GFP+ cells similar to goblet cells (arrows), 14 days after allogeneic BMT; d – bases of villi of regular 6-sided shape in cross section 35 days after syngeneic BMT; e – deformed villi of different sizes, surrounded by layers of connective tissue GFP+ cells 35 days after allogeneic BMT. Scale bar: 50 µm. Uv. volume: 20× (a, b, d, d), 10× (c).

Baixar (231KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies