Synaptophysin Expression by Supraependymal Structures of the Rat Brain

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Supraependymal plexus in ventricular system is one of the most cryptic structures in the mammalian central nervous system. Since both the topography of supraependymal elements and their functional role remain unclear, the aim of this research was to study the distribution of supraependymal structures within the ventricular system of the rat brain with synaptic function associated marker, synaptophysin. Serial sections of Wistar rats (4–6 month, n = 6) forebrain were examined using immunohistochemical detection of synaptophysin and tyrosine hydroxylase. It was shown that supraependymal plexus can form on the surface of ependymal cells synaptophysin-immunopostitive discrete structures, which indicates the formation of synaptic contacts. Although catecholaminergic nerve fibers were present on the ventricular surface in all studied zones, it seems that these nerve fibers may not always contain synaptophysin. Thus, it is assumed that the functional purpose of the supraependymal nerve plexus depends on its localization and can be associated whether with the regulation of ependymal cells and cerebrospinal fluid formation, or with the formation of long-range interneuronal connectivities.

Sobre autores

V. Razenkova

Institute of Experimental Medicine

Autor responsável pela correspondência
Email: valeriya.raz@yandex.ru
Russia, 197376, St. Petersburg

O. Kirik

Institute of Experimental Medicine

Email: valeriya.raz@yandex.ru
Russia, 197376, St. Petersburg

Bibliografia

  1. Колос Е.А., Григорьев И.П., Коржевский Д.Э. 2015. Маркер синаптических контактов – синаптофизин. Морфология. Т. 147. № 1. С. 78. (Kolos E.A., Grigoriyev I.P., Korzhevskiy D.E. 2015. A synaptic marker synaptophysin. Morphologija. V. 147. № 1. P. 78.)
  2. Муртазина А.Р., Бондаренко Н.С., Пронина Т.С., Чандран К.И., Богданов В.В., Дильмухаметова Л.К., Угрюмов М.В. 2021. Сравнительный анализ содержания моноаминов как нейрогормонов в ликворе и крови крыс в онтогенезе. Acta Naturae. Т. 13. № 4. С. 89. https://doi.org/10.32607/actanaturae.11516 (Murtazina A.R., Bondarenko N.S., Pronina T.S., Chandran K.I., Bogdanov V.V., Dilmukhametova L.K., Ugrumov M.V. 2021. A comparative analysis of CSF and the blood levels of monoamines as neurohormones in rats during ontogenesis. Acta Naturae. V. 13. № 4. P. 89.)
  3. Суфиева Д.А., Кирик О.В., Коржевский Д.Э. 2019. Астроцитарные маркеры в таницитах третьего желудочка головного мозга крысы в постнатальном онтогенезе и при старении. Онтогенез. Т. 50. № 3. С. 205. https://doi.org/10.1134/S0475145019030066 (Sufieva D.A., Kirik O.V., Korzhevskii D.E. 2019. Astrocyte markers in the tanycytes of the third brain ventricle in postnatal development and aging in rats. Russ. J. Dev. Biol. V. 50. P. 146.)
  4. Угрюмов М.В. 2009. Эндокринные функции мозга у взрослых млекопитающих и в онтогенезе. Онтогенез. Т. 40. № 1. С. 19. (Ugryumov M.V. 2009. Endocrine functions of brain in adult and developing mammals. Russ. J. Dev. Biol. V. 40. № 1. P. 14.)
  5. Calhoun M.E., Jucker M., Martin L.J., Thinakaran G., Price D.L., Mouton P.R. 1996. Comparative evaluation of synaptophysin-based methods for quantification of synapses. J. Neurocytol. V. 25. P. 821. https://doi.org/10.1007/BF02284844
  6. Chan-Palay V. 1976. Serotonin axons in the supra- and subependymal plexuses and in the leptomeninges; their roles in local alterations of cerebrospinal fluid and vasomotor activity. Brain Res. V. 102. P. 103. https://doi.org/10.1016/0006-8993(76)90578-3
  7. Cupédo R.N.J. 1977. The surface ultrastructure of the habenular complex of the rat. Anat. Embryol. V. 152. P. 43. https://doi.org/10.1007/BF00341434
  8. Cupédo R.N.J., de Weerd H. 1980. Serotonergic intraventricular axons in the habenular region. Phagocytosis after induced degeneration. Anat. Embryol. V. 158. P. 213. https://doi.org/10.1007/BF00315907
  9. Haemmerle C.A., Nogueira M.I., Watanabe I.S. 2015. The neural elements in the lining of the ventricular-subventricular zone: making an old story new by high-resolution scanning electron microscopy. Front. Neuroanat. V. 9. https://doi.org/10.3389/FNANA.2015.00134
  10. Hámori J., Somogyi J. 1983. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J. Comp. Neurol. V. 220. P. 365. https://doi.org/10.1002/CNE.902200402
  11. Janz R., Südhof T.C., Hammer R.E., Unni V., Siegelbaum S.A., Bolshakov V.Y. 1999. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron. V. 24. P. 687. https://doi.org/10.1016/S0896-6273(00)81122-8
  12. Korzhevskii D.E., Sukhorukova E.G., Kirik O.V., Grigorev I.P. 2015. Immunohistochemical demonstration of specific antigens in the human brain fixed in zinc-ethanol-formaldehyde. Eur. J. Histochem. V. 59. P. 5. https://doi.org/10.4081/EJH.2015.2530
  13. Martínez P.M., de Weerd H. 1977. The fine structure of the ependymal surface of the recessus infundibularis in the rat. Anat. Embryol. V. 151. P. 241. https://doi.org/10.1007/BF00318929
  14. Mollgard K., Wiklund L. 1979. Serotoninergic synapses on ependymal and hypendymal cells of the rat subcommissural organ. J. Neurocytol. V. 8. P. 445. https://doi.org/10.1007/BF01214802
  15. Mullier A., Bouret S.G., Prevot V., Dehouck B. 2010. Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J. Comp. Neurol. V. 518. P. 943. https://doi.org/10.1002/CNE.22273
  16. Navone F., Jahn R., Di Gioia G., Stukenbrok H., Greengard P., De Camilli P. 1986. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. V. 103. P. 2511. https://doi.org/10.1083/JCB.103.6.2511
  17. Page R.B. 2006. Anatomy of the hypothalamo-hypophysial omplex. In: Physiology of Reproduction. Academic Press. P. 1309.
  18. Rabey J.M., Hefti F. 1990. Neuromelanin synthesis in rat and human substantia nigra. J. Neural Transm.: Parkinson’s Dis. Dementia Sect. V. 2. P. 1. https://doi.org/10.1007/BF02251241
  19. Richards J.G., Lorez H.P., Colombo V.E., Guggenheim R., Kiss D., Wu J.Y. 1981. Demonstration of supra-ependymal 5-HT nerve fibres in human brain and their immunohistochemical identification in rat brain. J. Physiol. (Paris). V. 77. P. 219.
  20. Tong C.K., Chen J., Cebrián-Silla A., Mirzadeh Z., Obernier K., Guinto C.D., Tecott L.H., García-Verdugo J.M., Kriegstein A., Alvarez-Buylla A. 2014. Axonal control of the adult neural stem cell niche. Cell Stem Cell. V. 14. P. 500. https://doi.org/10.1016/J.STEM.2014.01.014
  21. Troshev D., Bannikova A., Blokhin V., Kolacheva A., Pronina T., Ugrumov M. 2022. Striatal neurons partially expressing a dopaminergic phenotype: functional significance and regulation. Int. J. Mol. Sci. V. 23. https://doi.org/10.3390/IJMS231911054/S1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (4MB)

Declaração de direitos autorais © В.А. Разенкова, О.В. Кирик, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies