Microvesicles from mesenchymal stem cells for cartilage tissue regeneration in equine osteoarthritis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Current treatment strategies for osteoarthritis primarily focus on symptom management. Currently, the use of cell therapy methods, including mesenchymal stem cells (MSCs), is practiced in medicine and veterinary medicine. Microvesicles (MVs) obtained from MSCs are also currently used for the purpose of regeneration. The purpose of this study was to investigate the potential effects of artificial MVs on rat chondrocytes. In vitro experiments showed that MVs obtained from MSCs had a positive effect on the viability and migration ability of the chondrocyte cell culture. In 3D modeling of OA in vitro, MVs neutralized the effect of pro-inflammatory factors IL-1b and TNF-α. Most likely, these effects were due to the direct penetration of MVs contents into chondrocytes, since the possibility of fusion of MVs membranes with chondrocyte membranes was experimentally demonstrated. Thus, we have shown the positive effect of MVs on an in vitro model of OA.

Full Text

Restricted Access

About the authors

A. M. Aimaletdinov

Kazan (Volga Region) Federal University

Author for correspondence.
Email: aimaletdinowam@gmail.com
Russian Federation, Kazan, 420008

A. G. Malanyeva

Kazan (Volga Region) Federal University

Email: aimaletdinowam@gmail.com
Russian Federation, Kazan, 420008

M. A. Tambovsky

Kazan (Volga Region) Federal University

Email: aimaletdinowam@gmail.com
Russian Federation, Kazan, 420008

E. Yu. Zakirova

Kazan (Volga Region) Federal University

Email: aimaletdinowam@gmail.com
Russian Federation, Kazan, 420008

References

  1. Закирова Е.Ю., Аймалетдинов А.М., Тамбовский М.А., Ризванов А.А. 2021. Сравнительная характеристика линий мезенхимных стволовых клеток различных видов животных. Цитология. Т. 63. № 2. С.139. (E.Yu. Zakirova, А.М. Aimaletdinov, M.A. Tambovsky, A.A. Rizvanov. 2021. Comparative characteristics of mesenchymal stem cell lines from different animal species. Tsitologiya. V. 63. No. 2. P. 139).
  2. Тамбовский М. А., Аймалетдинов А.М., Закирова Е.Ю. 2023. Современные тенденции применения стволовых клеток и их производных при криоконсервации спермы животных. Биол. мембраны. Т. 40. № 5. С. 328. (M. A. Tambovsky, A. M. Aimaletdinov, E. Yu. Zakirova. 2023. Current trends in the application of stem cells and their derivatives in animal sperm cryopreservation. Biochem. Moscow Suppl. Ser. A. V. 17. P. 243.) https://doi.org/10.31857/S0233475523050110
  3. Aimaletdinov A.M. Iuferova A.K., Zakirova. E.Yu. 2023. Isolation and cultivation of sterlet myoblasts. Opera Medica Physiologica. V. 3. P. 167. https://doi.org/10.24412/2500-2295-2023-3-167-173
  4. Atala A. 2004. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res. V. 7. №1. P.15. https://doi.org/10.1089/154916804323105053
  5. Bertoni L., Jacquet-Guibon S., Branly T., Legendre F., Desancé M., Mespoulhes C., Melin M., Hartmann D.J., Schmutz A., Denoix J.M., Galéra P., Demoor M., Audigié F. 2020. An experimentally induced osteoarthritis model in horses performed on both metacarpophalangeal and metatarsophalangeal joints: technical, clinical, imaging, biochemical, macroscopic and microscopic characterization. PLoS One. V. 15: e0235251. https://doi.org/10.1371/journal.pone.0235251
  6. Bhattacharjee M., Escobar Ivirico J.L., Kan H.M., Shah S., Otsuka T., Bordett R., Barajaa M., Nagiah N., Pandey R., Nair L.S., Laurencin C.T. 2022. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc. Natl. Acad. Sci. USA. V. 119: e2120968119. https://doi.org/10.1073/pnas.2120968119
  7. Bonab M.M., Alimoghaddam K., Talebian F., Ghaffari S.H., Ghavamzadeh A., Nikbin B. 2006. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. V. 7. P. 14. https://doi.org/10.1186/1471-2121-7-14
  8. Chen F.H., Rousche K.T., Tuan R.S. 2006. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. V. 2. P. 373. https://doi.org/10.1038/ncprheum0216
  9. Galuzzi M., Perteghella S., Antonioli B., Tosca M.C., Bari E., Tripodo G., Sorrenti M., Catenacci L., Mastracci L., Grillo F., Marazzi M., Torre M.L. 2018. Human engineered cartilage and decellularized matrix as an alternative to animal osteoarthritis model. Polymers (Basel). V. 10. Art. ID 738. https://doi.org/10.3390/polym10070738
  10. Goodrich L.R., Nixon A.J. 2006. Medical treatment of osteoarthritis in the horse – a review. Vet. J. V. 171. P. 51. https://doi.org/10.1016/j.tvjl.2004.07.008
  11. Kaufman M.R., Tobias G.W. 2003. Engineering cartilage growth and development. Clin. Plast. Surg. V. 30. P. 539. https://doi.org/10.1016/s0094-1298(03)00071-3
  12. Kesti M., Eberhardt C., Pagliccia G., Kenkel D., Grande D., Boss A., Zenobi-Wond M. 2015. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced Functional Materials. V. 25. P. 7406. https://doi.org/10.1002/adfm.201503423
  13. Kriston-Pál É., Haracska L., Cooper P., Kiss-Tóth E., Szukacsov V., Monostori É. 2020. A regenerative approach to canine osteoarthritis using allogeneic, adipose-derived mesenchymal stem cells. safety results of a long-term follow-up. Front. Vet. Sci. V. 7: P. 510. https://doi.org/10.3389/fvets.2020.00510
  14. La Greca A., Solari C., Furmento V., Lombardi A., Biani M.C., Aban C., Moro L., García M., Guberman A.S., Sevlever G.E., Miriuka S.G., Luzzani C. 2018. Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Exp. Mol. Med. V. 50. P. 1. https://doi.org/10.1038/s12276-018-0142-x
  15. Lee M.J., Kim J., Kim M.Y., Bae Y.S., Ryu S.H., Lee T.G., Kim J.H. 2010. Proteomic analysis of tumor necrosis factor-alpha-induced secretome of human adipose tissue-derived mesenchymal stem cells. J. Proteome Res. V. 9. P. 1754. https://doi.org/10.1021/pr900898n
  16. Li J.J., Hosseini-Beheshti E., Grau G.E., Zreiqat H., Little C.B. 2019. Stem cell-derived extracellular vesicles for treating joint injury and osteoarthritis. nanomaterials (Basel). V. 9. Art. ID 261. https://doi.org/10.3390/nano9020261
  17. Lories R.J., Luyten F.P. 2012. Osteoarthritis, a disease bridging development and regeneration. Bonekey. Rep. V. 1. Art. ID 136. https://doi.org/10.1038/bonekey.2012.136
  18. Lumi X., Hawlina M., Glavač D., Facskó A., Moe M.C., Kaarniranta K., Petrovski G. 2015. Ageing of the vitreous: from acute onset floaters and flashes to retinal detachment. Ageing Res. Rev. V. P. 71. https://doi.org/10.1016/j.arr.2015.03.006
  19. Mahajan A., Verma S., Tandon V. 2005. Osteoarthritis. J. Assoc. Physicians India. V. 53. P. 634.
  20. Meyer M. 2019. Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online. V. 18. Art. ID 24. https://doi.org/10.1186/s12938-019-0647-0
  21. Murray I.R., Péault B. 2015. Q&A: Mesenchymal stem cells – where do they come from and is it important? BMC Biol. V. 13. Art. ID 99. https://doi.org/10.1186/s12915-015-0212-7
  22. Phinney D.G., Hill K., Michelson C., DuTreil M., Hughes C., Humphries S., Wilkinson R., Baddoo M., Bayly E. 2006. Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cells. V. 24. P. 186. https://doi.org/10.1634/stemcells.2004-0236.
  23. Revenaugh M.S. 2005. Extracorporeal shock wave therapy for treatment of osteoarthritis in the horse: clinical applications. Vet. Clin. North Am. Equine Pract. V. 21. P. 609. https://doi.org/10.1016/j.cveq.2005.09.001
  24. Røsland G.V., Svendsen A., Torsvik A., Sobala E., McCormack E., Immervoll H., Mysliwietz J., Tonn J.C., Goldbrunner R., Lønning P.E., Bjerkvig R., Schichor C. 2009. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. V. 69. P. 5331. https://doi.org/10.1158/0008-5472.CAN-08-4630
  25. Rychel J.K. 2010. Diagnosis and treatment of osteoarthritis. Top Companion Anim. Med. V.25. P.20. https://doi.org/10.1053/j.tcam.2009.10.005
  26. Taruc-Uy R.L., Lynch S.A. 2013. Diagnosis and treatment of osteoarthritis. Prim. Care. V. 40. P. 821. https://doi.org/10.1016/j.pop.2013.08.003
  27. Thomas A.C., Hubbard-Turner T., Wikstrom E.A., Palmieri-Smith R.M. 2017. Epidemiology of posttraumatic osteoarthritis. J. Athl. Train. V.52. P. 491. https://doi.org/10.4085/1062-6050-51.5.08
  28. Wang J., Liao L., Wang S., Tan J. 2013. Cell therapy with autologous mesenchymal stem cells-how the disease process impacts clinical considerations. Cytotherapy. V. 15. P. 893. https://doi.org/10.1016/j.jcyt.2013.01.218
  29. Weinstein A.M., Rome B.N., Reichmann W.M., Collins J.E., Burbine S.A., Thornhill T.S., Wright J., Katz J.N., Losina E. 2013. Estimating the burden of total knee replacement in the United States. J. Bone Joint Surg. Am. V. 95. P. 385. https://doi.org/10.2106/JBJS.L.00206
  30. Wu C.C., Chen W.H., Zao B, Lai P.L., Lin T.C., Lo H.Y., Shieh Y.H., Wu C.H., Deng W.P. 2011. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials. V. 32. Art. ID 5847. https://doi.org/10.1016/j.biomaterials.2011.05.002.
  31. Wu L., Petrigliano F.A., Ba K., Lee S., Bogdanov J., McAllister D.R., Adams J.S., Rosenthal A.K., Van Handel B., Crooks G.M., Lin Y., Evseenko D. 2014. Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage. V. 23. P. 308. https://doi.org/10.1016/j.joca.2014.11.012
  32. Wu T.J., Fong Y.C., Lin C.Y., Huang Y.L., Tang C.H. 2018. Glucose enhances aggrecan expression in chondrocytes via the PKCα/p38-miR141-3p signaling pathway. J. Cell Physiol. V. 233. P. 6878. https://doi.org/10.1002/jcp.26451
  33. Wu X., Wang Y., Xiao Y., Crawford R., Mao X., Prasadam I. 2019. Extracellular vesicles: potential role in osteoarthritis regenerative medicine. J. Orthop. Translat. V. 21. P. 73. https://doi.org/10.1016/j.jot.2019.10.012
  34. Zakirova E., Aimaletdinov A., Mansurova M., Titova A., Kurilov I., Rutland C.S., Malanyeva A., Rizvanov A. 2024. Artificial microvesicles: new perspective on healing tendon wounds. Cells Tiss. Organs. V. 213. P. 24. https://doi.org/10.1159/000526845
  35. Zakirova E., Valeeva A., Sofronova S., Tambovsky M., Rutland C. Rizvanov A. Gomzikova M. 2022. Application of mesenchymal stem cells derived artificial microvesicles for the treatment of canine skin wound. BioNanoSci. V. 12. P. 83. https://doi.org/10.1007/s12668-021-00928-0
  36. Zhuang Y., Jiang S., Yuan C., Lin K. 2022. The potential therapeutic role of extracellular vesicles in osteoarthritis. Front. Bioeng. Biotechnol. V. 10: 1022368. https://doi.org/10.3389/fbioe.2022.1022368

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histograms of flow cytometry of cells isolated from rat cartilage tissue using specific fluorescently labeled antibodies, demonstrating the number of cells carrying antigens CD34, CD45, CD117, STRO1, aggrecan, collagen I, collagen II, CD29, CD44, CD90. Horizontally – the intensity of fluorescence, vertically – the number of cells. The histograms corresponding to the unpainted control cells are highlighted in dark color; the histograms corresponding to staining with specific AT labeled with fluorescent labels are highlighted in light color.

Download (212KB)
3. Fig. 2. Histograms of flow cytometry of cells isolated from horse adipose tissue using specific fluorescently labeled antibodies, demonstrating the number of cells carrying CD34, CD45, CD44, and CD90 antigens. The histograms corresponding to the unpainted control cells are highlighted in dark color; the histograms corresponding to staining with specific AT labeled with fluorescent labels are highlighted in light color.

Download (66KB)
4. Fig. 3. Visualization of differentiation of horse MSCs in osteogenic (alizarin red), chondrogenic (alcian blue) and adipogenic (Nile Red) directions.

Download (147KB)
5. Fig. 4. Fusion of MV obtained from horse MSCs with rat chondrocytes. The cytoplasmic membrane of MSCs is stained with fluorescent dye DiD, and rat chondrocytes are stained with fluorescent DiO (both from Life Technologies, USA). Confocal microscopy. a – MB stained with DiO; b – chondrocytes stained with DiD; c – nuclei of chondrocytes stained with Dapi; d – combination.

Download (106KB)
6. Fig. 5. 3D model of cartilage tissue printed on a Cellink bioprinter. a – Cellink Inkredible extrusion printer (Sweden); b – bioprinting process; c – chondrocyte sample printed on a bioprinter, light microscopy.

Download (216KB)
7. Fig. 6. Visualization of the effect of MV on 3D models of OA. The staining shows: alcyan blue – the production of glycosaminoglycans, hematoxylin and eosin – the cellularity of the printed samples, for the presence of collagen II – the functionality of chondrocytes.

Download (119KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».