Features of molecular phenotype and ultrastructure of smooth muscle cells in ascending aorta in premature born rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Preterm birth can contribute to the development of diseases of circulatory system in adulthood due to the incompleteness of the morphogenesis of the blood vessels wall. Smooth muscle cells are the leading cell population in the middle shell of the aortic wall and are plastic in nature, i. e. they are able to change their phenotype depending on the conditions of their environment. The presence of synthetically active smooth muscle cells in the aortic wall of an adult individual is a predictor of the formation of a wide range of cardiovascular diseases. The aim of our study is to identify the morphofunctional features of molecular phenotype and ultrastructure of smooth muscle cells of ascending aorta wall in rats born 12 and 24 hours prematurely. The paper presents the results of immunohistochemical and morphometric, as well as ultrastructural analysis of ascending aorta wall in Wistar rats born 12 and 24 hours prematurely. It has been shown that preterm birth leads to a later change in the phenotype of smooth muscle cells from synthetic to contractile, which can negatively affect the morphofunctional state of the cardiovascular system.

About the authors

O. N. Serebryakova

Siberian State Medical University

Author for correspondence.
Email: oserebryakovan@gmail.com

Department of Morphology and General Pathology

Russian Federation, Tomsk, 634050

V. V. Ivanova

Siberian State Medical University

Email: oserebryakovan@gmail.com

Department of Morphology and General Pathology

Russian Federation, Tomsk, 634050

I. V. Milto

Siberian State Medical University; Seversk Biophysical Research Center of the FMBA of Russia

Email: oserebryakovan@gmail.com

Department of Morphology and General Pathology, Department of Molecular and Cellular Radiobiology

Russian Federation, Tomsk, 634050; Seversk, 636013

References

  1. Серебрякова О.Н, Иванова В. В., Мильто И. В. 2023. Особенности строения стенки восходящей части аорты преждевременно рожденных крыс. Цитология. Т. 65. № 6. С. 593. (Serebryakova O.N, Ivanova V. V., Milto I. V. 2023. Structural features of ascending aorta wall in premature born rats. Tsitologiya. V. 65. P. 593—600.)
  2. Balint B., Bernstorff I. G., Schwab T., Schäfers H. J. 2023. Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta. Front. Cardiovasc. Med. V. 10: 1114355. doi: 10.3389/fcvm.2023.1114355
  3. Barnard C., Peters M., Sindler A., Farrell E., Baker K.., Palta M., Stauss H., Dagle J., Segar J., Pierce G., Eldridge M., Bates M. 2020. Increased aortic stiffness and elevated blood pressure in response to exercise in adult survivors of prematurity. Physiol. Rep. V. 8: e14462. doi: 10.14814/phy2.14462
  4. Bensley J., De Matteo R., Harding R., Black M. 2016. The effects of preterm birth and its antecedents on the cardiovascular system. Acta Obstet. Gynecol. Scand. V. 95. P. 652.
  5. Berry C., Looker T., Germain J. 1992. The growth and development of the rat aorta. J. Anat. V. 113. P. 1.
  6. Cao G., Xuan X., Hu J., Zhang R., Jin H., Dong H. 2022. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun. Signal. V. 20: 180. doi: 10.1186/s12964-022-00993-2
  7. Figueroa J., Oubre J., Vijayagopal P. 2004. Modulation of vascular smooth muscle cells proteoglycan synthesis by the extracellular matrix. J. Cell Physiol. V. 198. P. 302.
  8. Fujimoto T., Tokuyasu K. T., Singer S. J. Direct morphological demonstration of the coexistence of vimentin and desmin in the same intermediate filaments of vascular smooth muscle cells. J. Submicrosc. Cytol. 1987. V. 19. P. 1.
  9. Gabbiani G., Schmid E., Winter S., Chaponnier C., de Ckhastonay C., Vandekerckhove J., Weber K., Franke W. W. Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 298.
  10. Halayko A., Salari H., Ma X., Stephens N. 1996. Markers of airway smooth muscle cell phenotype. Am. J. Physiol. V. 270. P. 1040.
  11. Johnson R., Solanki R., Warren D. 2021. Mechanical programming of arterial smooth muscle cells in health and ageing. Biophys. Rev. V. 13. P. 757.
  12. Kanda K., Matsuda T. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. 1994. Cell Transplant. V. 3. P. 481.
  13. Lesauskaite V., Tanganelli P., Sassi C., Neri E., Diciolla F., Ivanoviene L., Epistolato M. C., Lalinga A. V., Alessandrini C., Spina D. 2001. Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum. Pathol. V. 32. P. 1003.
  14. Looker T., Berry C. 1997. The growth and development of rat aorta. J. Anat. V. 113. P. 17.
  15. Merrilees M., Campbell J., Spanidis E., Campbell G. 1990. Glycosaminoglycan synthesis by smooth muscle cells of differing phenotype and their response to endothelial cell conditioned medium. Atherosclerosis. V. 81. P. 245.
  16. Osborn M., Caselitz J., Puschel K., Weber K. 1987. Intermediate filament expression in human vascular smooth muscle and in arteriosclerotic plaques. Virchows Arch. A Pathol. Anat. Histopathol. V. 411. P. 449.
  17. Petsophonsakul P., Furmanik M., Forsythe R., Dweck M., Schurink G. W., Natour E., Reutelingsperger C., Jacobs M., Mees B., Schurgers L. 2019. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. V. 39. P. 1351.
  18. Qin H., Bao J., Tang J., Xu D., Shen L. 2023. Arterial remodeling: the role of mitochondrial metabolism in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. V. 324. P. 183.
  19. Rensen S., Doevendans P., van Eys G. 2007. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. V. 15. P. 100.
  20. Schmid E., Osborn M., Rungger-Brändle E., Gabbiani G., Weber K., Franke W. 1982. Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp. Cell Res. V. 137. P. 329.
  21. Shi J., Yang Y., Cheng A., Xu G., He F. 2020. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. V. 319. P. 613.
  22. Sweeney M., Jones C., Greenwood S., Baker P., Taggart M. 2006. Ultrastructural features of smooth muscle and endothelial cells of isolated isobaric human placental and maternal arteries. Placenta. V. 27. P. 635.
  23. Tang H., Chen A., Zhang H., Gao X., Kong X., Zhang J. 2022. Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells. V. 11: 4060. doi: 10.3390/cells11244060
  24. Thyberg J., Nilsson J., Palmberg L., Sjölund M. 1985. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res. V. 239. P. 69.
  25. Wagenseil J., Mecham R. Vascular extracellular matrix and arterial mechanics. 2009. Physiol. Rev. V. 89. P. 957.
  26. Wang G., Jacquet L., Karamariti E., Xu Q. 2015. Origin and differentiation of vascular smooth muscle cells. J. Physiol. V. 14. P. 3013.
  27. Wang L., Zhang J., Fu W., Guo D., Jiang J., Wang Y. 2012. Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. J. Vasc. Surg. V. 56. P. 1698.
  28. Wilson D. 2011. Vascular smooth muscle structure and function. In: Mechanisms of vascular disease: A reference book for vascular specialists. University of Adelaide Press. P. 13.
  29. Ye G., Nesmith A., Parker K. 2014. The role of mechanotransduction on vascular smooth muscle myocytes cytoskeleton and contractile function. Anat. Rec. V. 297. P. 1758.
  30. Zhang J., Wang L., Fu W., Wang C., Guo D., Jiang J., Wang Y. 2013. Smooth muscle cell phenotypic diversity between dissected and unaffected thoracic aortic media. J. Cardiovasc. Surg. V. 54. P. 511.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».