The role of glycodelin in the conversion of Cd11b+ cells to MDSC and the regulation of their functional activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The amniotic variant of glycodelin (Gd) has pronounced immunomodulatory properties and is involved in the formation of immune tolerance during pregnancy. The role of recombinant Gd at physiological (0.2 and 2 μg/ml) and superphysiological (10 μg/ml) concentrations in regulating the differentiation and functional activity of human myeloid-derived suppressor cells (MDSCs) was investigated in vitro. MDSCs were generated from CD11b+ peripheral blood cells of healthy donors by two-step induction (IL-1β + GM-CSF and then lipopolysaccharide (LPS). The effect of Gd on the content of polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC), intracellular expression of indoleamine 2.3-dioxygenase (IDO), arginase-1 (Arg1, and cytokine profile in cell cultures was investigated. In general, the transformation of CD11b+ cells into MDSCs exhibits the following characteristics: as a result of cytokine induction, predominantly M-MDSCs but no PMN-MDSCs are formed and Arg1 expression is virtually undetected. Gd was found to increase the number of M-MDSCs at concentrations of 2 and 10 μg/ml. Gd was found not to affect Arg1 expression but increased the percentage of MDSCs expressing IDO (10 μg/ml). Gd also modulated the cytokine profile of CD11b+ cells by suppressing the production of IL-19, IL-26 and TWEAK/TNFsF12 at a physiological concentration of 2 μg/ml and the production of IFN-α2 and IL-26 at a supraphysiological concentration. Thus, the role of Gd in the conversion of CD11b+ cells to MDSCs was examined under conditions of cytokine induction in vitro.

Full Text

Restricted Access

About the authors

K. Yu. Shardina

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences

Author for correspondence.
Email: Shardinak@gmail.com
Russian Federation, Perm

S. A. Zamorina

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences; Perm State National Research University

Email: Shardinak@gmail.com

Биологический факультет 

Russian Federation, Perm; Perm

M. S. Bochkova

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences; Perm State National Research University

Email: Shardinak@gmail.com

Биологический факультет  

Russian Federation, Perm; Perm

V. P. Timganova

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russian Federation, Perm

S. V. Uzhviyuk

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences

Email: Shardinak@gmail.com
Russian Federation, Perm

M. B. Raev

Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences — Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences; Perm State National Research University

Email: Shardinak@gmail.com

Биологический факультет  

Russian Federation, Perm; Perm

References

  1. Заморина С.А., Тимганова В.П., Бочкова М.С., Шардина К.Ю., Ужвиюк С.В., Храмцов П.В., Кропанева М.Д., Раев М.Б. 2021. Роль гликоделина в регуляции дифференцировки миелоидных супрессорных клеток. Мед. иммунология. Т. 21. № 4. С. 603 (Zamorina S.A., Timganova V.P., Bochkova M.S., Shardina K.Yu., Uzhviuk S.V., Khramtsov P.V., Kropaneva M.D., Raev M.B. 2021. The role of glycodelin in the regulation of differentiation of myeloid-derived suppressor cells. Meditsinskaya Immunologiya. V. 23. P. 641). https://doi.org/10.15789/1563-0625-ROG-2209
  2. Тимганова В.П., Шардина К.Ю., Бочкова М.С., Ужвиюк С.В., Усанина Д.И., Заморина С.А. 2023. Влияние трофобластического β1-гликопротеина на дифференцировку миелоидных супрессорных клеток. Мед. иммунология. T. 25. № 3. С. 513. (Timganova V.P., Shardina K.Yu., Bochkova M.S., Uzhviuk S.V., Usanina D.I., Zamorina S.A. 2023. Effect of pregnancy-specific β1-glycoprotein on myeloid-derived suppressor cell differentiation. V. 25. P. 513). https://doi.org/10.15789/1563-0625-EOP-2838
  3. Fallarino F., Grohmann U., Vacca C., Bianchi R., Orabona C., Spreca A., Fioretti M.C., Puccetti P. 2002. T cell apoptosis by tryptophan catabolism. Cell. Death. Differ. V. 9. P. 1069. https://doi.org/10.1038/sj.cdd.4401073
  4. Gantt S., Gervassi A., Jaspan H., Horton H. 2014. The role of myeloid-derived suppressor cells in immune ontogeny. Front. Immunol. V. 5. P. 1. https://doi.org/ 10.3389/fimmu.2014.00387
  5. Halttunen M., Kämäräinen M., Koistinen H. 2000. Glycodelin: a reproduction-related lipocalin. Biochim. Biophys. Acta. Protein Struct. Mol. Enzymol. V. 1482. P. 149. https://doi.org/10.1016/S0167-4838(00)00158-8
  6. Köstlin-Gille N., Gille C. 2020. Myeloid-derived suppressor cells in pregnancy and the neonatal period. Front. Immunol. V. 11. 10.3389/fimmu.2020.584712' target='_blank'>https://doi: 10.3389/fimmu.2020.584712
  7. Lam K. K., Chiu P. C., Lee C., Pang R.T., Leung C.O., Koistinen H., Seppala M., Ho P.C., Yeung W.S. 2011. Glycodelin-A protein interacts with siglec-6 protein to suppress trophoblast invasiveness by down-regulating extracellular signal-regulated kinase (ERK)/c-Jun Signaling Pathway. J. Biol. Chem. V. 286. P. 37118. 10.1074/jbc.M111.233841' target='_blank'>https://doi: 10.1074/jbc.M111.233841
  8. Li K., Shi H., Zhang B., Ou X., Ma Q., Chen Y., Shu P., Li D., Wang Y. 2021a. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Sig. Transduct. Target. Ther. V. 6. P. 362. https://doi.org/10.1038/s41392-021-00670-9
  9. Li W.X., Xu X.H., Jin L.P. 2021b. Regulation of the innate immune cells during pregnancy: an immune checkpoint perspective. J. Cell. Mol. Med. V. 25. P. 10362. 10.1111/jcmm.17022' target='_blank'>https://doi: 10.1111/jcmm.17022
  10. Lim H.X., Kim T.S., Poh C.L. 2020. Understanding the differentiation. expansion. recruitment and suppressive activities of myeloid-derived suppressor cells in cancers. Int. J. Mol. Sci. V. 21. P. 3599. https://doi.org/10.3390/ijms21103599
  11. Ostrand-Rosenberg S., Sinha P., Figley C., Long R., Park D., Carter D., Clements V.K. 2017. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J. Leukoc. Biol. V. 101. P. 1091. https://doi.org/10.1189/jlb.1HI1016-306RR
  12. Rieber N., Gille C., Köstlin N., Schäfer I., Spring B., Ost M., Spieles H., Kugel H.A., Pfeiffer M., Heininger V., Alkhaled M., Hector A., Mays L., Kormann M., Zundel S., Fuchs J., Handgretinger R., Poets C.F., Hartl D. 2013. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin. Exp. Immunol. V. 174. P. 45. https://doi.org/10.1111/cei.12143
  13. Saito S., Nakashima A., Shima T., Ito M. 2010. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. V. 63. P. 601. https://doi.org/10.1111/j.1600-0897.2010.00852.x
  14. Santegoets K.C.M., Gielen P.R., Büll C., Schulte B.M., Kers-Rebel E.D., Küsters B., Bossman S.A.J.F.H., Ter Laan M., Wesseling P., Adema G.J. 2019. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer. Immunol. Immunother. V. 68. P. 937. https://doi.org/10.1007/s00262-019-02332-w
  15. Savasan Z.A., Chaiworapongsa T., Romero R., Hussein Y., Kusanovic J.P., Xu Y., Dong Z., Kim C.J., Hassan S.S. 2012. Interleukin-19 in fetal systemic inflammation. J. Matern. Fetal. Neonatal. Med. V. 25. P. 995. https://doi.org/10.3109/14767058.2011.605917
  16. Shardina K., Timganova V., Bochkova M., Uzhviyuk S. 2023. Generation of human myeloid-derived suppressor cells from CD11b+ cells in vitro. In: Isaeva E., Rocha Á. (eds) Science and Global Challenges of the 21st Century – Innovations and Technologies in Interdisciplinary Applications. Perm Forum 2022. Lect. Not. in Netw. and Syst. 622. Springer. Cham. https://doi.org/10.1007/978-3-031-28086-3_49
  17. Timganova V.P., Shardina K.Yu., Bochkova M.S., Uzhviyuk S.V., Usanina D.I, Zamorina S.A. 2023. Effect of pregnancy-specific β1-glycoprotein on myeloid-derived suppressor cell differentiation. Med. Immun. (Russia). V. 25. P. 513. https://doi.org/10.15789/1563-0625-EOP-2838
  18. Uchida H., Maruyama T., Nishikawa-Uchida S., Miyazaki K., Masuda H., Yoshimura Y. 2013. Glycodelin in reproduction. Reprod. Med Biol. V. 12. P. 79–84. https://doi.org/10.1007/s12522-013-0144-2
  19. Vijayan M., Lee C-L., Chiu P.C.N., Lee K.F. 2018. Glycodelin-A polarized human macrophages exhibit characteristics and functions similar to decidual macrophages. Am. J. of Reprod. Immun. V. 80. P. 81. https://doi.org/10.1111/aji.55_12984
  20. Weng J., Couture C., Girard S. 2003. Innate and adaptive immune systems in physiological and patholog. pregn. biology. V. 12. P. 402. https://doi.org/10.3390/biology12030402
  21. Wiley S.R., Cassiano L., Lofton T., Davis-Smith T., Winkles J.A., Lindner V., Liu H., Daniel T.O., Smith C.A., Fanslow W.C. 2001. A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity. V. 15. P. 837. https://doi.org/10.1016/s1074-7613(01)00232-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Study of glycodelin (Gd) of different glands for the conversion of CD11b+ cells (from peripheral blood mononuclear cells of donors) to the MDSC phenotype. Medians, interquartile range (Q1–Q3, bar boundaries), minimum and maximum values (vertical bars) are presented; vertical: the proportion of living Lin–HLA-DR‒ cells in the gate; (K1 – control, without adding cytokines and glycodelin to the culture medium, K2 – control 2, adding only cytokines to the medium); differences are significant at P < 0.05: (*) – between K1 and K2 (n = 7, Friedman tests).

Download (75KB)
3. Fig. 2. Indoleamine 2,3-dioxygenase (IDO) content in MDSC cells when using glycodelin (Gd) at different concentrations. Medians, interquartile range (Q1–Q3), minimum and maximum values are presented; differences are significant at P < 0.05 (Friedman test): (*) – between the induction control (K1, culture without the addition of cytokines and Gd) and K2 (culture with the addition of cytokines and without Gd); (#) – differences from K2.

Download (72KB)
4. Fig. 3. Production of cytokines IFN-α2, IL-19, IL-26 and TWEAK/TNFsF12 by CD11b+ cells induced into the MDSC phenotype using glycodelin (Gd) at different concentrations. The content of cytokines in MDSC culture supernatants is shown. Medians, interquartile range (Q1–Q3, bar boundaries), minimum and maximum values (vertical bars) are presented. (*) – differences in median values (n = 7) are significant at P < 0.05 compared to K2 (culture with the addition of cytokines and without Gd; nonparametric Friedman test).

Download (218KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies