Immunofluorescent identification of dystrophin, actin, myosin light and heavy chains in somatic muscle cells of earthworm Lumbricus terrestris

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In muscle cells of the motor muscles of the earthworm Lumbricus terrestris dystrophin, actin, fast and slow isoforms of myosin heavy chains were identified by fluorescence microscopy. It can be assumed that the expression of these proteins was carried out at the earliest stages of the evolutionary formation of the intracellular contractile apparatus of the motor tissue in both invertebrates and vertebrates. This study will complement the picture of the evolutionary formation of motor muscle tissue.

Full Text

Restricted Access

About the authors

L. F. Nurullin

Kazan State Medical University; Kazan Institute of Biochemistry and Biophysics of Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”

Author for correspondence.
Email: lenizn@yandex.ru
Russian Federation, Kazan; Kazan

E. M. Volkov

Kazan State Medical University

Email: euroworm@mail.ru
Russian Federation, Kazan

References

  1. Давид О.Ф. Морфофизиологические основы локомоции аннелид. АН СССР. Ин-т эвол. физиол. и биохим. им. И.М. Сеченова. Л.: Наука, 1990. 168 c. (David O.F. 1990. Morfofiziologicheskie osnovy lokomocii annelid. AN SSSR. In-t evoluc. fiziologii i biohimii im. I.M. Sechenova. L.: Nauka. 168 p.)
  2. Cadot B., Gache V., Gomes E.R. 2015. Moving and positioning the nucleus in skeletal muscle — one step at a time. Nucleus. V. 6. P. 373. https://doi.org/10.1080/19491034. 2015.1090073
  3. Dancker P., Löw I., Hasselbach W., Wieland T. 1975. Interaction of actin with phalloidin: polymerization and stabilization of F-actin. Biochim. Biophys. Acta. V. 400. P. 407. https://doi.org/10.1016/0005-2795(75)90196-8
  4. Filippova A., Purschke G., Tzetlin A.B., Müller M.C.M. 2006. Three-dimensional reconstruction of the F-actin musculature of Dorvillea kastjani (Dorvilleidae, Polychaeta) by means of phalloidin-labelling and cLSM. Scientia Marina. V. 70(S3). P. 293. https://doi.org/ 10.3989/scimar.2006.70s3293
  5. Filippova A., Pürschke G., Tzetlin A.B., Müller M.C.M. 2010. Musculature in polychaetes: comparison of Myrianida prolifera (Syllidae) and Sphaerodoropsis sp. (Sphaerodoridae). Invertebrate Biology. V. 129. P. 184. https://doi.org/10.1111/j.1744-7410.2010.00191.x
  6. Florczyk-Soluch U., Polak K., Dulak J. 2021. The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell. Mol. Life. Sci. V. 78. P. 5447. https://doi.org/ 10.1007/s00018-021-03862-2
  7. Fromherz S., Szent-Györgyi A.G. 1995. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin. Proc. Natl. Acad. Sci. USA. V. 92. P. 7652. https://doi.org/10.1073%2Fpnas.92.17.7652
  8. Giugia J., Gieseler K., Arpagaus M., Ségalat L. 1999. Mutations in the dystrophin-like dys-1 gene of Caenorhabditis elegans result in reduced acetylcholinesterase activity. FEBS Lett. V. 463. P. 270. https://doi.org/10.1016/s0014-5793(99)01651-8
  9. Han Y.H., Ryu K.B., Medina Jiménez B.I., Kim J., Lee H.Y., Cho S.J. 2020. Muscular development in Urechis unicinctus (Echiura, Annelida). Int. J. Mol. Sci. V. 21. P. 1. https://doi.org/10.3390/ijms21072306
  10. Hooper S.L., Thuma J.B. 2005. Invertebrate muscles: muscle specific genes and proteins. Physiol. Rev. V. 85. P. 1001. https://doi.org/10.1152/physrev.00019.2004
  11. Kanzawa N., Kawamura Y., Matsuno A., Maruyama K. 1991. Characterization of myosin isolated from bodywall smooth muscle of the annelid, Urechis unicinctus. Proc. Japan Acad. V. 67. P. 176. https://doi.org/10.2183/pjab.67.176
  12. Li Y., Hu H., Butterworth M.B., Tian J.B., Zhu M.X., O’Neil R.G. 2016. Expression of a Diverse array of Ca2+-activated K+ channels (SK1/3, IK1, BK) that functionally couple to the mechanosensitive TRPV4 channel in the collecting duct system of kidney. PLoS One. V. 11: e0155006. https://doi.org/10.1371/journal.pone.0155006
  13. Lovato T.L., Meadows S.M., Baker P.W., Sparrow J.C., Cripps R.M. 2001. Characterization of muscle actin genes in Drosophila virilis reveals significant molecular complexity in skeletal muscle types. Insect. Mol. Biol. V. 10. P. 333. https://doi.org/10.1046/j.0962-1075.2001.00270.x
  14. Lowey S., Waller G.S., Trybus K.M. 1993. Function of skeletal muscle myosin heavy and light chain isoforms by an in vitro motility assay. J. Biol. Chem. V. 268. P. 20414. https://doi.org/10.1016/S0021-9258(20)80744-3
  15. Meedel T.H. 1983. Myosin expression in the developing ascidian embryo. J. Exp. Zool. V. 227. P. 203. https://doi.org/10.1002/jez.1402270205
  16. Mercer R.C., Mudalige W.A., Ige T.O., Heeley D.H. 2011. Vertebrate slow skeletal muscle actin — conservation, distribution and conformational flexibility. Biochim. Biophys. Acta. V. 1814. P. 1253. https://doi.org/10.1016/j.bbapap.2011.06.009
  17. Miller D.M. 3rd, Ortiz I., Berliner G.C., Epstein H.F. 1983. Differential localization of two myosins within nematode thick filaments. Cell. V. 34. P. 477. https://doi.org/10.1016/0092-8674(83)90381-1
  18. Nieznanski K., Nieznanska H., Skowronek K., Kasprzak A.A., Stepkowski D. 2003. Ca2+ binding to myosin regulatory light chain affects the conformation of the N-terminus of essential light chain and its binding to actin. Arch. Biochem. Biophys. V. 417. P. 153. https://doi.org/10.1016/s0003-9861(03)00382-5
  19. Ono S., Pruyne D. 2012. Biochemical and cell biological analysis of actin in the nematode Caenorhabditis elegans. Methods. V. 56. P. 11. https://doi.org/10.1016/j.ymeth.2011.09.008
  20. Pilgram G.S., Potikanond S., Baines R.A., Fradkin L.G., Noordermeer J.N. 2010. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. V. 41. P. 1. https://doi.org/10.1007/s12035-009-8089-5
  21. Roberts R.G., Bobrow M. 1998. Dystrophins in vertebrates and invertebrates. Hum. Mol. Genet. V. 7. P. 589. https://doi.org/10.1093/hmg/7.4.589
  22. Royuela M., Hugon G., Rivier F., Paniagua R., Mornet D. 2001. Dystrophin-associated proteins in obliquely striated muscle of the leech Pontobdella muricata (Annelida, Hirudinea). Histochem. J. V. 33. P. 135. https://doi.org/ 10.1023/A:1017979623095
  23. Royuela M., Paniagua R., Rivier F., Hugon G., Robert A., Mornet D. 1999. Presence of invertebrate dystrophin-like products in obliquely striated muscle of the leech, Pontobdella muricata (Annelida, Hirudinea). Histochem. J. V. 31. P. 603. https://doi.org/10.1023/A:1003855108802
  24. Rüchel J., Müller M.C.M. 2007. F-actin framework in Spirorbis cf. spirorbis (Annelida: Serpulidae): phalloidin staining investigated and reconstructed by cLSM. Invertebr. Biol. V. 126. P. 173. https://doi.org/10.1111/j.1744-7410.2007.00087.x
  25. Sadoulet-Puccio H.M., Kunkel L.M. 1996. Dystrophin and its isoforms. Brain Pathol. V. 6. P. 25. https://doi.org/ 10.1111/j.1750-3639.1996.tb00780.x
  26. Sweeney H.L., Holzbaur E.L.F. 2018. Motor proteins. Cold Spring Harb. Perspect. Biol. V. 10: a021931. https://doi.org/10.1101/cshperspect.a021931
  27. Volkov E.M., Nurullin L.F., Svandová I., Nikolsky E.E., Vyskocil F. 2000. Participation of electrogenic Na+,K+-ATPase in the membrane potential of earthworm body wall muscles. Physiol. Res. V. 49. P. 481. http://www.biomed.cas.cz/physiolres/pdf/49/49_481.pdf
  28. Wang Y., Mattson M.P., Furukawa K. 2002. Endoplasmic reticulum calcium release is modulated by actin polymerization. J. Neurochem. V. 82. P. 945. https://doi.org/ 10.1046/j.1471-4159.2002.01059.x
  29. Wells L., Edwards K.A., Bernstein S.I. 1996. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. V. 15. P. 4454. https://doi.org/10.1002/j.1460-2075.1996.tb00822.x
  30. Wilson D.G.S., Tinker A., Iskratsch T. 2022. The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun. Biol. V. 5. P. 1022. https://doi.org/10.1038/s42003-022-03980-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Staining of an earthworm somatic muscle cell preparation with antibodies to dystrophin. The downward and upward arrows indicate, respectively, areas of the preparation with pale staining and areas with more intense staining. Scale bar: 20 µm

Download (228KB)
3. Fig. 2. Double staining of a preparation of somatic muscle cells of the earthworm on F-actin by phalloidin labeled with fluorescent dye and DAPI to reveal cell nuclei: a - staining with TMR-phalloidin; b - staining with DAPI; c - superimposition of images a and b; d - enlarged area of image c. Scale bar: 20 µm

Download (712KB)
4. Fig. 3. Detection of fast and slow isoforms of myosin heavy chains in a preparation of somatic muscle cells of the earthworm by double fluorescent antibody staining: a - antibody staining for fast isoform of myosin heavy chains (green color); b - antibody staining for slow isoform of myosin heavy chains (red color); c - superimposition of images a and b. Scale bar: 20 μm

Download (515KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies