Interaction of pRb and beta-catenin in cancer and normal tissue in the human prostate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Prostate cancer (PCa) is one of the most common oncological diseases, which goes through two stages in its development. The first stage, localized prostate cancer, can proceed indefinitely in a dormant form that does not require active medical intervention, or suddenly turn into an aggressive metastatic form with lethal outcome. The pathogenesis of the transition of the dormant form of PCa to the metastatic form remains not fully understood. The signaling pathways of the tumor suppressor pRb and the proto-oncogene β-catenin are probably the most involved in the pathogenesis of PCa but the role of their interaction in the pathogenesis of prostate cancer has not been studied. The publication on the pathogenesis of tumors in other tissues suggests that pRb may lose some properties of a tumor suppressor at the initial stage of PCa development due to its interaction with β-catenin that enables tumor cells to gain competitive advantages for reproduction. In this work, we have shown that the RB and β-catenin (CTNNB1) genes are well expressed in tumor and normal prostate tissue. Unlike β-catenin, pRb is not detected by immunoblotting in tumor and normal prostate tissue, but is easily determined in this way in extracts of control T98G cells. Co-immunoprecipitation with antibodies to pRb from extracts of tumor and normal prostate tissue makes it possible to detect this protein and β-catenin by subsequent immunoblotting, which indicates the physical interaction of these proteins in prostate tissue. On the other hand, immunoprecipitation of β-catenin with antibodies to its C-terminal fragment does not detect this protein in prostate extracts by subsequent immunoblotting using the same antibody. In contrast to prostate tissue, β-catenin is readily detected by immunoprecipitation combined with immunoblotting in T98G control cell extracts. The obtained data suggest that pRb and β-catenin physically interact with each other in cells of different tissue specificity. In T98G cells, this interaction probably occurs through the C-terminal fragment of β-catenin, but in prostate cells it occurs in a different way, since the C-fragment of β-catenin is shielded from such interaction, possibly due to its physical association with pRb.

Full Text

Restricted Access

About the authors

V. M. Ryabov

Institute of Cytology, Russian Academy of Sciences

Email: voldemryabov@yandex.ru
Russian Federation, St. Petersburg

N. I. Tyapkin

Roman Leningrad Regional Clinical Oncological Dispensary, Ministry of Health of the Russian Federation

Email: voldemryabov@yandex.ru
Russian Federation, Kuzmolovo

A. P. Rodimzev

Institute of Cytology, Russian Academy of Sciences

Email: voldemryabov@yandex.ru
Russian Federation, St. Petersburg

O. G. Lyublinskaya

Institute of Cytology, Russian Academy of Sciences

Email: voldemryabov@yandex.ru
Russian Federation, St. Petersburg

I. V. Guzhova

Institute of Cytology, Russian Academy of Sciences

Email: voldemryabov@yandex.ru
Russian Federation, St. Petersburg

B. V. Popov

Institute of Cytology, Russian Academy of Sciences

Author for correspondence.
Email: voldemryabov@yandex.ru
Russian Federation, St. Petersburg

References

  1. Петров Н.С., Воскресенский М.А., Грозов Р.В., Коршак О.В., Зарицкий А.Ю., Верещагина Н.А., Комяков Б.К., Попов Б.В. 2016. Маркеры клеток базального слоя эпителия предстательной железы являются эффективными индикаторами ее злокачественной трансформации. Цитология. Т. 58. С. 526. (Petrov N.S., Voskresenskiy M.A., Grozov R.V., Korshak O.V., Zaritskey A.Y., Vereschagina N.A., Komyakov B.K. and Popov B.V. 2017. Markers of the basal cell layer of prostate are effective indicators of its malignant transformation. Cell Tiss. Biol. V. 11. P. 205). https:// doi.org/10.1134/S1990519X17030099
  2. Рябов В.M., Воскресенский М.А., Попов Б.В. 2022. Роль опухолевого супрессора RB в развитии локализованного и кастрационно-резистентного рака предстательной железы. Цитология. T. 64. С. 208. (V.M. Ryabov, M.A. Voskresenskiy, B.V. Popov. 2022. Role of the tumor suppressor RB in the development of localized and castration-resistant prostate cancer. Cell Tiss. Biol. V. 16. P. 434). https://doi.org/10.1134/S1990519X2205008X
  3. Balk S.P., Knudsen K.E. 2008. AR, the cell cycle, and prostate cancer. Nucl Recept Signal. V. 6. P. e001. https://doi: 10.1621/nrs.06001
  4. Cancer Genome Atlas Network. 2012. Comprehensive molecular characterization of human colon and rectal cancer. Nature. V. 487. P. 330. https://doi.org/10.1038/nature11252
  5. Chau B.N., Borges H.L., Chen T.T., Masselli A., Hunton I.C., Wang J.Y. 2002. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat. Cell Biol. V. 4. P. 757. https://doi.org/10.1038/ncb853
  6. Ciavarra G., Zacksenhaus E. 2011. Direct and indirect effects of the pRb tumor suppressor on autophagy. Autophagy. V. 7. P. 544. https://doi.org/10.4161/auto.7.5.15056
  7. Cunha G.R. 1994. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer. V. 74. P. 1030. https://doi.org/10.1002/1097-0142(19940801)74:3+<1030:aid-cncr2820741510>3.0.co;2-q.
  8. Derenzini M., Donati G., Mazzini G., Montanaro L., Vici M., Ceccarelli C., Santini D., Taffurelli M., Treré D. 2008. Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. Clin. Cancer Res. V. 14. P. 2199. https://doi.org/10.1158/1078-0432.CCR-07-2065
  9. Dick F.A., Goodrich D.W., Sage J., Dyson N.J. 2018. Non-canonical functions of the RB protein in cancer. Nat. Rev. Cancer. V. 18. P. 442. https://doi.org/10.1038/s41568-018-0008-5
  10. Dyson N.1998. The regulation of E2F by pRB-family proteins. Genes Dev. V 12. P. 2245. https://doi.org/10.1101/gad.12.15.2245
  11. Friend S.H., Bernards R., Rogelj S., Weinberg R.A., Rapaport J.M., Albert D.M., Dryja T.P. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature. V. 323. P. 643. https://doi.org/10.1038/323643a0
  12. Han J., Soletti R.C., Sadarangani A., Sridevi P., Ramirez M.E., Eckmann L., Borges H.L., Wang J.Y. 2013. Nuclear expression of β-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol. Cancer Res. V. 11. P. 207. https://doi.org/10.1158/1541-7786.MCR-12-0670
  13. Hansen K., Farkas T., Lukas J., Holm R., Rönnstrand L., and Bartek J. 2001. Phosphorylation-dependent and -independent functions of p130 cooperate to evoke a sustained G1 block. EMBO J. V. 20. P. 422. https//doi.org/10.1093/emboj/20.3.422
  14. Kareta M.S., Gorges L.L., Hafeez S., Benayoun B.A., Marro S., Zmoos A.F., Cecchini M.J., Spacek D., Batista L.F., O’Brien M., Ng Yi-H., Ang C.E., Vaka D., Artandi S.E., Dick F.A., Brunet A. et al. 2015. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell. V. 16. P. 39. https://doi.org/10.1016/j.stem.2014.10.019
  15. Kypta R.M., Waxman J. 2012. Wnt/β-catenin signalling in prostate cancer. Nat. Rev. Urol. V. 9. P. 418. https://doi.org/10.1016/j.stem.2014.10.019
  16. Lee W.H., Bookstein R., Hong F., Young L.J., Shew J.Y., Lee E.Y. 1987. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science. V. 235. P. 1394. https://doi.org/10.1126/science.3823889
  17. Mandigo A.C., Tomlins S.A., Kelly W.K., Knudsen K.E. 2021. Relevance of pRB Loss in Human Malignancies. Clin. Cancer Res. V. 28. P. 255. https:// doi.org/10.1158/1078-0432.CCR-21-1565
  18. Mazor M., Kawano Y., Zhu H., Waxman J., Kypta R.M. 2004. Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. V. 23. P. 7882. https://doi.org/10.1038/sj.onc.1208068
  19. McNair C., Xu K., Mandigo A.C., Benelli M., Leiby B., Rodrigues D., Lindberg J., Gronberg H., Crespo M., De Laere B., Dirix L., Visakorpi T., Li F., Feng F.Y., de Bono Jуе Demichelis F. et al. 2018. Differential impact of RB status on E2F1 reprogramming in human cancer. J. Clin. Invest. V. 128. P. 341. https://doi.org/10.1172/JCI93566
  20. Morris E.J., Ji J.Y., Yang F., Di Stefano L., Herr A., Moon N.S., Kwon E.J., Haigis K.M., Näär A.M., Dyson N.J. 2008. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature. V. 455. P. 552. https://doi.org/10.1038/nature07310
  21. Petre C.E., Wetherill Y.B., Danielsen M., Knudsen K.E. 2002. Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J. Biol. Chem. V. 277. P. 2207. https://doi: 10.1074/jbc.M106399200
  22. Popov B.V., Sutula G.I., Petrov N.S., Yang X.J. 2018. Preparation and characterization of the antibody recognizing AMACR inside its catalytic center. Int. J. Oncol. V. 52. P. 547. https://doi.org/10.3892/ijo.2017.4220
  23. Popov B., Petrov N., Ryabov V., Evsyukov I. 2020. p130 and pRb in the maintenance of transient quiescence of mesenchymal stem cells. Stem Cells Int. Article ID 8883436. https://doi.org/10.1155/2020/8883436
  24. Sage J. 2012. The retinoblastoma tumor suppressor and stem cell biology. Genes Dev. V. 26. P. 1409. https://doi.org/10.1101/gad.193730.112
  25. Schneider J.A., Logan S.K. 2018. Revisiting the role of Wnt/β-catenin signaling in prostate cancer. Mol. Cell Endocrinol. V. 462. P. 3. https://doi.org/10.1016/j.mce.2017.02.008
  26. Sharma A., Yeow W.S, Ertel A., Coleman I., Clegg N., Thangavel C., Morrissey C., Zhang X., Comstock C.E., Witkiewicz A.K. et al. 2010. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J. Clin. Invest. V. 120. P. 4478. https://doi.org/10.1172/JCI44239
  27. Sherr C.J. 1996. Cancer cell cycles. Science. V. 274. P. 1672. https://doi.org/10.1126/science.274.5293.1672
  28. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. 2021. Cancer Statistics, 2021. CA Cancer J. Clin. V. 71. P. 7. https://doi.org/10.3322/caac.21654
  29. Tomlins S.A., Laxman B., Varambally S., Cao X., Yu J., Helgeson B.E., Cao Q., Prensner J.R., Rubin M.A., Shah R.B., Mehra R., Chinnaiyan A.M. 2008. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia. V. 10. P. 177. https://doi.org/10.1593/neo.07822
  30. Truica C.I., Byers S., Gelmann E.P. 2000. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. V. 60. P. 4709.
  31. Viatour P., Sage J. 2011. Newly identified aspects of tumor suppression by RB. Dis. Model. Mech. V. 4. P. 581. https://doi.org/10.1242/dmm.008060
  32. Voeller H.J., Truica C.I., Gelmann E.P. 1998. Beta-catenin mutations in human prostate cancer. Cancer Res. V. 58. P. 2520.
  33. Wang C.Y., Xu Z.B., Wang J.P., Jiao Y., Zhang B. 2017. Rb deficiency accelerates progression of carcinoma of the urinary bladder in vivo and in vitro through inhibiting autophagy and apoptosis. Int. J. Oncol. V. 50. P. 1221. https://doi.org/10.3892/ijo.2017.3889
  34. Weber J.D., Kuo M.L., Bothner B., DiGiammarino E.L., Kriwacki R.W., Roussel M.F., Sherr C.J. 2000. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. V. 20. P. 2517. https://doi.org/10.1128/MCB.20.7.2517-2528.2000
  35. Weinberg R.A. 1995. The retinoblastoma protein and cell cycle control. Cell. V. 81. P. 323. https://doi.org/10.1016/0092-8674(95)90385-2
  36. Wodarz A., Nusse R. 1998. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. V. 14. P. 59. https://doi.org/10.1146/annurev.cellbio.14.1.59
  37. Yang X., Chen M.W., Terry S., Vacherot F., Bemis D.L., Capodice J., Kitajewski J., de la Taille A., Benson M.C., Guo Y., Buttyan R. 2006. Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene. V. 25. P. 3436. https://doi.org/10.1038/sj.onc.1209366
  38. Yu X., Wang Y., Jiang M., Bierie B., Roy-Burman P., Shen M.M., Taketo M.M., Wills M., Matusik R.J. 2009. Activation of beta-catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate. V. 69. P. 249. https://doi.org/10.1002/pros.20877
  39. Xu Y., Chen S.Y., Ross K.N., Balk S.P. 2006. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. V. 66. P. 7783. https://doi.org/10.1158/0008-5472.CAN-05-4472

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Amplification of RB and CTNNB1 (β-catenin gene) in tumor and normal prostate gland (PG) tissue of patients operated on for prostate cancer. OT-PCR amplification of markers: epithelial (CK5, AR), tumor marker (AMACR), RB and CTNNB1 (β-catenin gene) in tumor (a) normal (b) prostate tissue: 1 - 50 bp mol% marker, 2 - CK5 (423 bp), 3 - AR (294 bp), 4 - AMACR (247 bp), 5 - RB (91 bp), 6 - CTNNB1 (101 bp), 7 - GAPDH (326 bp. ); c, d - PCR-RV amplification of RB and CTNNB1, respectively; c, d - PCR-RV data represent the arithmetic mean and its error (n = 3)

Download (393KB)
3. Fig. 2. Levels of β-catenin and pRb in tumor (1) and normal (2) PG tissue of three clinical samples (65, 66, 67) from patients operated on for localized RPV. Immunoblotting (WB) and immunoprecipitation (IP); a - WB: proteins of PB extracts were separated by electrophoresis in 10% PAGE at a total cellular protein load of 50 μg per lane; Gapdh was determined to equalize the load on different lanes, extracts of T98G cell line were used as positive control; b - β-catenin levels in tumor (1) and normal (2) PB tissue, arithmetic mean values and their errors are shown (n = 7); c - IP: pRb from tumor and normal PB tissue; extracts containing 50 μg of total cellular protein per lane were separated by electrophoresis in PAH and visualized by WB; d - immunofluorescence detection of pRb (green) and β-catenin (red) in primary culture cells from tumor (1) and normal (2) PB tissue (clinical trial 70): nuclei stained with DAPI (blue color); confocal laser scanning microscope FV3000 (Japan; 405, 561 and 640 nm lasers), objective magnification 60x

Download (552KB)
4. Fig. 3. Proteins pRb and β-catenin physically interact with each other and form a complex in human prostate tissue extracts: a - β-catenin (clinical samples 58 and 59) is not precipitated from prostate tissue extracts but is detected on immunoblot by CAT-15 antibodies (Thermo Fisher Scientific, USA) recognizing an epitope in the C-terminal region of the molecule; b - antibodies to pRb co-immunoprecipitate β-catenin from prostate tissue extracts (clinical samples 56 and 57). T98G cells were used as positive controls. IP, WB are the same as in Fig. 2. Results for tumor (1) and normal (2) PG tissue are shown

Download (276KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies