ACTN4-dependent regulation of double-strand DNA break repair is independent of NF-Kb activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

α-Actinin-4 is an actin-binding protein that is involved in a wide range of cellular processes. Along with actin and other proteins of the actin cytoskeleton, α-actinin-4 was found not only in the cytoplasm, but also in the nucleus of various cells. As a nuclear protein, it is involved in regulation of certain transcription factors. In particular, it can regulate transcriptional activity of NF-kB, which largely determines the resistance of cancer cells to apoptosis and anticancer therapy. During our previous studies, it was found that α-actinin-4 can influence resistance of cancer cells to topoisomerase II inhibitors and determine the efficiency of DNA double-strand break repair. We have demonstrated that α-actinin-4 interferes with the assembly of complexes involved in DNA repair via NHEJ and HRR, which in turn leads to an imbalance between these pathways. In this study, we were answering to the question of how α-actinin-4 is involved in the regulation of the DNA double-strand breaks repair following genotoxic stress. Our results indicate that the effect of α-actinin-4 on repair progression in H1299 non-small cell lung cancer cells does not depend on the transcription factor NF-kB activity. We found that in the nucleus of H1299 cells, α-actinin-4 is localized not only in the nucleoplasm, but also reveals close association with chromatin.

Full Text

Restricted Access

About the authors

D. V. Kriger

Institute of Cytology, Russian Academy of Sciences

Author for correspondence.
Email: daryamalikova@gmail.com
Russian Federation, St. Petersburg

G. V. Vasileva

Institute of Cytology, Russian Academy of Sciences

Email: daryamalikova@gmail.com
Russian Federation, St. Petersburg

E. V. Lomerta

Institute of Cytology, Russian Academy of Sciences

Email: daryamalikova@gmail.com
Russian Federation, St. Petersburg

D. G. Tentler

Institute of Cytology, Russian Academy of Sciences

Email: daryamalikova@gmail.com
Russian Federation, St. Petersburg

References

  1. Бабаков В.Н., Бобков Д.Е., Петухова О.А., Туроверова Л.В., Кропачева И.В., Подольская Е.П., Пинаев Г.П. 2004. Альфа-актинин-4 и субъединица р65/RelA транскрипционного фактора NF-kB в клетках А431 локализуются совместно и мигрируют в ядро при действии эпидермального фактора роста. Цитология Т. 46. № 12. С. 1065. (Babakov V.N., Bobkov D.E., Petukhova O.A., Turoverova L.V., Kropacheva I.V., Podol’skaya E.P., Pinaev G.P. 2004. Alpha-Actinin-4 and p65/RelA subunit of NF-kappaB transcription factor are co-localized and migrate together into the nucleus in EGF-stimulated A431 cell. Tsitologiia. V. 46(12). P. 1065.
  2. Agarwal N., Adhikari A.S., Iyer S.V, Hekmatdoost K., Welch D.R., Iwakuma T. 2013. MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene V. 32. P. 462.
  3. Aksenova V., Turoverova L., Khotin M., Magnusson K.E., Tulchinsky E., Melino G., Pinaev G.P., Barlev N., Tentler D. 2013. Actin-binding protein alpha-actinin 4 (ACTN4) is a transcriptional co-activator of RelA/p65 sub-unit of NF-kB. Oncotarget V. 4. P. 362.
  4. Aoudjit F., Brochu N., Bélanger B., Stratowa C., Hiscott J., Audette M. 1997. Regulation of intercellular adhesion molecule-1 gene by tumor necrosis factor-alpha is mediated by the nuclear factor-kappaB heterodimers p65/p65 and p65/c-Rel in the absence of p50. Cell Growth Differ V. 8. P. 335.
  5. Baron M.D., Davison M.D., Jones P., Critchley D.R. 1987. The sequence of chick alpha-actinin reveals homologies to spectrin and calmodulin. J. Biol. Chem. V. 262. P. 17623.
  6. Ben Short. 2011. BRCA1 on the move. J. Cell Biol. V. 192. P. 369.
  7. Bours V., Bonizz G., Bentires-Alj M., Bureau F., Piette J., Lekeux P., Merville M. 2000. NF-kB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicol. V. 153. P. 27.
  8. Campbell K.J., Rocha S., Perkins N.D. 2004. Active repression of antiapoptotic gene expression by Rela (p65) NF-kB. V. 13. P. 853.
  9. Catz S. D., Johnson J. L. 2001. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene. V. 20. P. 7342.
  10. DiDonato J.A., Mercurio F., Karin M. 2012. NF-κB and the link between inflammation and cancer. Immunol. Rev. V. 246. P. 379.
  11. Dixson J.D., Forstner M.J., Garcia D.M. 2003. The alpha-actinin gene family: a revised classification. J. Mol. Evol. V. 56. P. 1.
  12. Gao Y., Li G., Sun L., He Y., Li X., Sun Z., Wang J., Jiang Y., Shi J. 2015. ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer. V. 15. P. 277.
  13. Haskill S., Beg A.A., Tompkins S.M., Morris J.S., Yurochko A.D., Sampson-Johannes A., Mondal K., Ralph P., Baldwin A.S.J. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell. V. 65. P. 1281.
  14. Hinata K., Gervin A.M., Jennifer Zhang Y., Khavari P.A. 2003. Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene. V. 22. P. 1955.
  15. Honda K. 2015. The biological role of actinin-4 (ACTN4) in malignant phenotypes of cancer. Cell Biosci. V. 5. P. 41.
  16. Honda K., Yamada T., Endo R., Ino Y., Gotoh M., Tsuda H., Yamada Y., Chiba H., Hirohashi S. 1998. Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J. Cell Biol. V. 140. P. 1383.
  17. Huang Q., Li X., Huang Z., Yu F., Wang X., Wang S., He Z., Lin J. 2020. ACTN4 promotes the proliferation, migration, metastasis of osteosarcoma and enhances its invasive ability through the NF-κB pathway. Pathol. Oncol. Res. V. 26. P. 893.
  18. Kriger D., Novitskaya K., Vasileva G., Lomert E., Aksenov N.D., Barlev N.A., Tentler D. 2022. Alpha-actnin-4 (ACTN4) selectively affects the DNA double-strand breaks repair in non-small lung carcinoma cells. Biol. Direct. V. 17. P. 1.
  19. Kumeta M., Yoshimura S.H., Harata M., Takeyasu K. 2010. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J. Cell Sci. V. 123. P. 1020.
  20. Lomert E., Turoverova L., Kriger D., Aksenov N. D., Nikotina A. D., Petukhov A., Mittenberg A.G., Panyushev N.V., Khotin M., Volkov K., Barlev N.A., Tentler D. 2018. Co-expression of RelA/p65 and ACTN4 induces apoptosis in non-small lung carcinoma cells. Cell Cycle. V. 17. P. 616.
  21. Magné N., Toillon R.A., Bottero V., Didelot C., Houtte P. Van, Gérard J.P., Peyron J.F. 2006. NF-κB modulation and ionizing radiation: Mechanisms and future directions for cancer treatment. Cancer Lett. V. 231. P. 158.
  22. Mayo M.W., Baldwin A.S. 2000. The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance. Biochim. Biophys. Acta. V. 1470. P. M55.
  23. Mirman Z., de Lange T. 2020. 53BP1: a DSB escort. Genes Dev. V. 34. P. 7.
  24. Miura N., Kamita M., Kakuya T., Fujiwara Y., Tsuta K., Shiraishi H., Takeshita F., Ochiya T., Shoji H., Huang W., Ohe Y., Yamada T., Honda K. 2016. Efficacy of adjuvant chemotherapy for non-small cell lung cancer assessed by metastatic potential associated with ACTN4. Oncotarget. V. 7. P. 33165.
  25. Moreno J.M., Sanchez-Montero J.M., Sinisterra J.V, Nielsen L.B. 1991. Contribution to the study of the enzymatic activity of benzonase. J. Mol. Catalysis. V. 69. P. 419.
  26. Moureau S., Luessing J., Harte E.C., Voisin M., Lowndes N.F. 2016. A role for the p53 tumour suppressor in regulating the balance between homologous recombination and non-homologous end joining. Open Biol. V. 6. P. 160225. https://doi.org/10.1098/rsob.160225
  27. Muslimović A., Johansson P., Hammarste O. 2012. Measurement of H2AX phosphorylation as a marker of ionizing radiation induced cell damage. In: Current topics in ionizing radiation research. London: InTech. P. 3.
  28. Nakanishi C., Toi M. 2005. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Natю Revю Cancer. V. 5. P. 297.
  29. Noro R., Honda K., Nagashima K., Motoi N., Kunugi S., Matsubayashi J., Takeuchi S., Shiraishi H., Okano T., Kashiro A., Meng X., Yoshida Y., Watanabe S., Usuda J., Inoue T., et al. 2022. Alpha-actinin-4 (ACTN4) gene amplification is a predictive biomarker for adjuvant chemotherapy with tegafur/uracil in stage I lung adenocarcinomas. Cancer Sci. V. 113. P. 1002.
  30. Noro R., Honda K., Tsuta K., Ishii G., Maeshima A.M., Miura N., Furuta K., Shibata T., Tsuda H., Ochiai A., Sakuma T., Nishijima N., Gemma A., Asamura H., Nagai K., Yamada T. 2013. Distinct outcome of stage I lung adenocarcinoma with ACTN4 cell motility gene amplification. Ann. Oncol. V. 24. P. 2594.
  31. Poli J., Gasser S.M., Papamichos-Chronakis M. 2017. The INO80 remodeller in transcription, replication and repair. Philosoph. Transact. Royal Soc. B: Biol. Sci. V. 372. P. 20160290.
  32. Ricca A., Biroccio A., Trisciuoglio D., Cippitelli M., Zupi G., Bufalo D. Del. 2001. RelA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells. Br. J. Cancer. V. 85. P. 1914.
  33. Shen X., Mizuguchi G., Hamiche A., Wu C. 2000. A chromatin remodelling complex involved in transcription and DNA processing. Nature. V. 406. P. 541.
  34. Shiraishi H., Fujiwara Y., Kakuya T., Tsuta K., Motoi N., Miura N., Watabe Y., Watanabe S., Noro R., Nagashima K., Huang W., Yamada T., Asamura H., Ohe Y., Honda K. 2017. Actinin-4 protein overexpression as a predictive biomarker in adjuvant chemotherapy for resected lung adenocarcinoma. Biomark. Med. V. 11. P. 721.
  35. Staudt L. M. 2010. Oncogenic activation of NF-kB. Cold Spring Harb. Perspect. Biol V. 2. P. a000109. https://doi.org/10.1101/cshperspect.a000109
  36. Stylianou E., Nie M., Ueda A., Zhao L. 1999. C-Rel and p65 trans-activate the monocyte chemoattractant protein-1 gene in interleukin-1 stimulated mesangial cells. Kidney Int. V. 56. P. 873.
  37. Tentler D., Lomert E., Novitskaya K., Barlev N.A. 2019. Role of ACTN4 in tumorigenesis, metastasis, and EMT. Cells. V. 8. P. 1427.
  38. Vermeulen K., Van Bockstaele D.R., Berneman Z.N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. V. 36. P. 131.
  39. Wang J., Jacob N.K., Ladner K.J., Beg A., Perko J.D., Tanner S.M., Liyanarachchi S., Fishel R., Guttridge D.C. 2009. RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep. V. 10. P. 1272.
  40. Wang P., Qiu W., Dudgeon C., Liu H., Huang C., Zambetti G., Yu J., Zhang L. 2009. PUMA is directly activated by NF-κB and contributes to TNF-α-induced apoptosis. Cell Death Differ. V. 16. P. 1192.
  41. Wang W., Mani A.M., Wu Z.-H. 2017. DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J. Cancer Metastasis Treat. V. 3. P. 45.
  42. Wu K., Jiang S.W., Thangaraju M., Wu G., Couch F.J. 2000. Induction of the BRCA2 promoter by nuclear factor-kappa B. J. Biol. Chem. V. 275. P. 35548.
  43. Xia L., Tan S., Zhou Y., Lin J., Wang H., Oyang L., Tian Y., Liu L., Su M., Wang H., Cao D., Liao Q. 2018. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther. V. 11. P. 2063.
  44. Yu J., Zhang L. 2008. PUMA, a potet killer with or without p53. Oncogene. V. 27. P. 71.
  45. Zhao X., Hsu K.-S., Lim J.H., Bruggeman L.A., Kao H.-Y. 2015. α-Actinin 4 potentiates nuclear factor κ-light-chain-enhancer of activated B-cell (NF-κB) activity in podocytes independent of its cytoplasmic actin binding function. J. Biol. Chem. V. 290. P. 338.
  46. Zhao X., Khurana S., Charkraborty S., Tian Y., Sedor J. R., Bruggman L. A., Kao H.-Y. 2017. α-Actinin 4 (ACTN4) regulates glucocorticoid receptor-mediated transactivation and transrepression in podocytes. J. Biol. Chem. V. 292. P. 1637.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of expression levels of NF-kB-dependent genes in the control line H1299 (ACTN4WT) and in two ACTN4 gene knockout lines (ACTN4KO_cl1 and ACTN4KO_cl2). Real-time PCR. * - Differences with the control line are reliable at p < 0.05 (Mann-Whitney U-test); n/r - not reliable

Download (233KB)
3. Fig. 2. Expression levels of DNA damage response genes. Real-time PCR: a - comparison of gene expression levels in control H1299 cells (ACTN4WT) and in H1299 cell lines knockout for the ACTN4 gene (ACTN4KO_cl1 and ACTN4KO_cl2) before (control) and after etoposide treatment (Eto); b - comparison of gene expression levels in a control H1299 cell line (ACTN4WT) and an H1299 cell line overexpressing the ACTN4 gene (ACTN4OE). * - differences are reliable at p < 0.05 (Mann-Whitney U-test)

Download (589KB)
4. Fig. 3. Relative resistance of H1299 (curve 1) and H1299 RelAOE (curve 2) cells to doxorubicin (a), etoposide (b) and cisplatin (c). Cytotoxicity (MTT test) was evaluated after treatment of cells for 72 h. For each substance, a dose-effect curve was plotted using a logistic regression model. Vertical bars are errors of the mean value

Download (483KB)
5. Fig. 4. Evaluation of DNA break repair efficiency in H1299 and H1299 RelAOE cell lines: a - average number (and its error) of histone γH2AX focuses in the nucleus. Cells were treated with etoposide (Eto) or doxorubicin (Doxo) for 40 min, after which the drug was removed and cultured for another 4 h; b - results of DNA Comet test under alkaline conditions. Cells were treated with etoposide as described previously, followed by culturing in the absence of the drug for 8 h. Control - intact cells

Download (190KB)
6. Fig. 5. Distribution of ACTN4 in H1299 cells: a - electrophoresis in SDS-gel of proteins obtained by subcellular fractionation from H1299 cells. Protein detection by Coomassie staining; b - Western blot with antibodies to ACTN4. Histone H1 was used as a protein loading control. M - protein marker; Cyt - cytoplasm; NucPl - nucleoplasm; Chrom - chromatin

Download (531KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies