The role of autophagy and macrophage polarization in the processes of chronic inflammation and regeneration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The cause of many serious illnesses, including diabetes, obesity, osteoporosis and neurodegenerative diseases is chronic inflammation that develops in adipose tissue, bones or the brain. This inflammation occurs due to a shift in the polarization of macrophages/microglia towards the pro-inflammatory phenotype M1. It has now been proven that the polarization of macrophages is determined by the intracellular level of autophagy in the macrophage. By modulating autophagy, it is possible to cause switching of macrophage activities towards M1 or M2. Summarizing the material accumulated in the literature, we believe that the activation of autophagy reprograms the macrophage towards M2, replacing its protein content, receptor apparatus and including a different type of metabolism. The term reprogramming is most suitable for this process, since it is followed by a change in the functional activity of the macrophage, namely, switching from cytotoxic pro-inflammatory activity to anti-inflammatory (regenerative). Modulation of autophagy can be an approach to the treatment of oncological diseases, neurodegenerative disorders, osteoporosis, diabetes and other serious diseases.

Full Text

Restricted Access

About the authors

S. G. Zubova

Institute of Cytology of the Russian Academy of Sciences

Author for correspondence.
Email: egretta_julia@mail.ru
Russian Federation, St. Petersburg

A. V. Morshneva

Institute of Cytology of the Russian Academy of Sciences

Email: egretta_julia@mail.ru
Russian Federation, St. Petersburg

References

  1. Agrawal I., Jha S. 2020. Mitochondrial dysfunction and Alzheimer’s disease: role of microglia. Front. Aging Neurosci. V. 12. P. 252.
  2. Ahmed B., Sultana R., Greene M.W. 2021. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. V. 137. P. 111315. https://doi.org /10.1016/j.biopha.2021.111315
  3. Aoki S., Shimizu K., Ito K. 2020. Autophagy-dependent mitochondrial function regulates osteoclast differentiation and maturation. Biochem. Biophys. Res. Commun. V. 527. P. 874.
  4. Azam S., Haque M.E., Kim I.S., Choi D.K. 2021. Microglial turnover in ageing-related neurodegeneration: therapeutic avenue to intervene in disease progression. Cells. V. 10. P. 150.
  5. Blagosklonny M.V. 2011. Progeria, rapamycin and normal aging: recent breakthrough. Aging. V. 3. P. 685.
  6. Blagosklonny M.V. 2018. Does rapamycin slow down time? Oncotarget. V. 9. P. 30210. https://doi.org /10.18632/oncotarget.25788
  7. Cao L., He C. 2013. Polarization of macrophages and microglia in inflammatory demyelination. Neurosci. Bull. V. 29. P. 189.
  8. Carroll B., Dunlop E.A. 2017. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem. J. V. 474. P. 1453.
  9. Chen W., Chen Y., Liu Y., Wang X.J. 2022. Autophagy in muscle regeneration: potential therapies for myopathies. Cachexia Sarcopenia Muscle. V. 13. P. 1673.
  10. Cheng J., Liao Y., Dong Y., Hu H., Yang N., Kong X., Li S., Li X., Guo J., Qin L., Yu J., Ma C., Li J., Li M., Tang B., Yuan Z. 2020. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy. V. 16. P. 2193–2205. https://doi.org /10.1080/15548627.2020.1719723
  11. Chylikova J., Dvorackova J., Tauber Z., Kamarad V. 2018. M1/M2 macrophage polarization in human obese adipose tissue. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. V. 162. P. 79.
  12. Cui X., Morales R.T., Qian W., Wang H., Gagner J.P., Dolgalev I., Placantonakis D., Zagzag D., Cimmino L., Snuderl M., Lam R.H.W., Chen W. 2018. Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials. V. 161. P. 164.
  13. Davies L.C., Jenkins S.J., Allen J.E., Taylor P.R. 2013. Tissue-resident macrophages. Nat. Immunol. V. 14. P. 986.
  14. Fenn A.M., Henry C.J., Huang Y., Dugan A., Godbout J.P. 2012 Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav. Immunol. V. 26. P. 7667.
  15. Florencio-Silva R., Sasso G.R., Simões M.J., Simões R.S., Baracat M.C., Sasso-Cerri E., Cerri P.S. 2017. Osteoporosis and autophagy: what is the relationship? Rev. Assoc. Med. Bras. V. 63. P. 173.
  16. Fujisaka S., Usui I., Nawaz A., Takikawa A., Kado T., Igarashi Y., Tobe K. 2016. M2 macrophages in metabolism. Diabetol. Int. V. 7. P. 342.
  17. Ghosh A.K., Mau T., O’Brien M., Garg S., Yung R. 2016. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging (Albany NY). V. 8. P. 2525.
  18. Glick D., Barth S., Macleod K. 2010. Autophagy: cellular and molecular mechanisms. J. Pathol. V. 221. P. 3.
  19. Green D.R., Llambi F. 2015. Cell death signaling. Cold Spring Harb. Perspect. Biol. V. 7. P. a006080. https://doi.org / 10.1101/cshperspect.a006080
  20. Guo Y., Lin C., Xu P., Wu S., Fu X., Xia W., Yao M. 2016. AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes. Sci. Rep. V. 6. P. 36416. https://doi.org / 10.1038/srep36416
  21. Guo Y., Feng Y., Cui X., Wang Q., Pan X. 2019. Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice. Cancer Immunol. Immunother. V. 68. P. 1909.
  22. Han X., Sun S., Sun Y., Song Q., Zhu J., Song N., Chen M., Sun T., Xia M., Ding J., Lu M., Yao H., Hu G. 2019. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. V. 15. P. 1860.
  23. Hesketh M., Sahin K.B., West Z.E, Murray R.Z. 2017. Macrophage phenotypes regulate scar formation and chronic wound healing. Int. J. Mol. Sci. V. 18. P. 1545. https://doi.org /10.3390/ijms18071545
  24. Jha M.K., Lee W.H. 2016. Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Suk. K. Biochem. Pharmacol. V. 103. P. 1.
  25. Jin M.M., Wang F., Qi D., Liu W.W., Gu C, Mao C.J., Yang Y.P., Zhao Z., Hu L.F., Liu C.F. 2018. A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front. Aging Neurosci. V. 10. P. 378.
  26. Kabeya Y., Mizushima N., Ueno T., Yamamoto A., Kirisako T., Noda T., Kominami E., Ohsumi Y., Yoshimori T. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. V. 19. P. 5720.
  27. Kametaka S., Okano T., Ohsumi M., Ohsumi Y. 1998. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. V. 273. P. 22284.
  28. Kang Y.H., Cho M.H., Kim J.Y., Kwon M.S., Peak J.J., Kang S.W., Yoon S.Y., Song Y. 2016. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget. V. 7. P. 35577.
  29. Kapetanovic R., Bokil N.J., Sweet M.J. 2015. Innate immune perturbations, accumulating DAMPs and inflammasome dysregulation: A ticking time bomb in ageing. Ageing Res. Rev. V. 24. Pt A. P. 40.
  30. Kapoor N., Niu J., Saad Y., Kumar S., Sirakova T., Becerra E., Li X., Kolattukudy P.E. 2015. Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J. Immunol. V. 194. P. 6011.
  31. Kawamata T., Kamada Y., Kabeya Y., Sekito T., Ohsumi Y. 2008. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell. V. 19. P. 2039.
  32. Kawano A., Ariyoshi W., Yoshioka Y., Hikiji H., Nishihara T., Okinaga T. 2019. Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. J. Cell Biochem. V. 120. P. 12604–12617.
  33. Klionsky D.J., Abdel-Aziz A.K., Abdelfatah S., Abdellatif M., Abdoli A., Abel S., Abeliovich H., Abildgaard M.H., Abudu Y.P., Acevedo-Arozena A., Adamopoulos I.E., Adeli K., Adolph T.E., Adornetto A., Aflaki E., et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. V. 17. P. 1.
  34. Kuo W.T., Chang J.M., Chen C.C., Tsao N., Chang C.P. 2022. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life. V. 74. P. 157.
  35. Lee D.E., Bareja A., Bartlett D.B., White J.P. 2019. Autophagy as a therapeutic target to enhance aged muscle regeneration. Cells. V. 8. P. 183.
  36. Lee J.W., Park S., Takahashi Y., Wang H.G. 2010. The association of AMPK with ULK1 regulates autophagy. PLoS. One. V. 5. P. e15394.
  37. Liu K., Zhao E., Ilyas G., Lalazar G., Lin Y., Haseeb M., Tanaka K.E., Czaja M.J. 2015. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. V. 11. P. 271.
  38. Liu R., Cui J., Sun Y., Xu W., Wang Z., Wu M., Dong H., Yang C., Hong S., Yin S., Wang H. 2021. Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via Atg5 repression during aging. Cell Death Discov. V. 7. P. 397.
  39. Lu B., Huang L., Cao J., Li L., Wu W., Chen X., Ding C. 2021. Adipose tissue macrophages in aging-associated adipose tissue function. J. Physiol. Sci. V. 71. P. 38.
  40. Mauthe M., Orhon I., Rocchi C., Zhou X., Luhr M., Hijlkema K.J., Coppes R.P., Engedal N., Mari M., Reggiori F. 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. V. 14. P. 1435.
  41. Mazher M., Moqidem Y.A., Zidan M., Sayed A.A., Abdellatif A. 2023. Autophagic reprogramming of bone marrow-derived macrophages. Immunol. Res. V. 71. P. 229.
  42. Metchnikoff E. 1892. Lecons sur la pathologie comparee de L’inflammation. Masson: Paris.
  43. Miron V.E., Boyd A., Zhao J.W., Yuen T.J., Ruckh J.M., Shadrach J.L., van Wijngaarden P., Wagers A.J., Williams A., Franklin R.J.M., Ffrench-Constant C. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. V. 16. P. 1211.
  44. Moehle M.S., West A.B. 2015. M1 and M2 immune activation in Parkinson’s disease: foe and ally? Neurosci. V. 302. P. 59.
  45. Montaseri A., Giampietri C., Rossi M., Riccioli A., Del Fattore A., Filippini A. 2020. The role of autophagy in osteoclast differentiation and bone resorption function. Biomolecules. V. 10. P. 1398.
  46. Nawaz A., Tobe K. 2019. M2-like macrophages serve as a niche for adipocyte progenitors in adipose tissue. J. Diabetes Investig. V. 10. P. 1394.
  47. Nikodemova M., Small A.L., Kimyon R.S., Watters J.J. 2016. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol. Genomics. V. 48. P. 336.
  48. Nayak D., Roth T.L., McGavern D.B. 2014. Microglia development and function. Annu. Rev. Immunol. V. 32. P. 367.
  49. Orihuela R., McPherson C.A., Harry G.J. 2016. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. V. 73. P. 649.
  50. Peled M., Fisher E.A. 2014. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front. Immunol. V. 5. P. 579.
  51. Perandini L.A., Chimin P., Lutkemeyer D.D.S, Câmara N.O.S. 2018. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche? FEBS J. V. 285. P. 1973.
  52. Pomilio C., Gorojod R.M., Riudavets M., Vinuesa A., Presa J., Gregosa A., Bentivegna M., Alaimo A., Alcon S.P., Sevlever G., Kotler M.L., Beauquis J., Saravia F. 2020. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients. Geroscience. V. 42. P. 613.
  53. Rojas J., Salazar J., Martínez M.S., Palmar J., Bautista J., Chávez-Castillo M., Gómez A., Bermúdez V. 2015. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Hindawi Publ. Corporation Scientifica. P. 851252. https://doi.org/ 10.1155/2015/851252
  54. Schlundt C., Fischer H., Bucher C.H., Rendenbach C., Duda G.N., Schmidt-Bleek K. 2021.The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Acta Biomat. V. 133. P. 46.
  55. Serý O., Povová J., Míšek I., Pešák L., Janout V. 2013. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. V. 51. P. 1.
  56. Singh L.P., Yumnamcha T., Swornalata Devi T. 2018. Mitophagic flux deregulation, lysosomal destabilization and NLRP3 inflammasome activation in diabetic retinopathy: potentials of gene therapy targeting TXNIP and the redox system. Ophthalmol. Res. Rep. V. 3. P. ORRT-126.
  57. Stone A.E.L., Green R., Wilkins C., Hemann E.A., Gale M. 2019. RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection. Jr. Nat. Commun. V. 10. P. 3649.
  58. Su T.T. 2018. Cellular plasticity, caspases and autophagy; that which does not kill us, well, makes us different. Open Biol. 2018. V. 8. P. 180157. https://doi.org /10.1098/rsob.180157
  59. Suzuki K., Akioka M., Kondo-Kakuta C., Yamamoto H., Ohsumi Y. 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. V. 126. P. 2534.
  60. Urwanisch L., Luciano M., Horejs-Hoeck J. 2021. The NLRP3 inflammasome and its role in the pathogenicity of leukemia. Int. J. Mol. Sci. V. 22. P. 1271. https://doi.org /10.3390/ijms22031271
  61. Van Eijk M., Aerts J.M.F.G. 2021. The unique phenotype of lipid-laden macrophages. Int. J. Mol. Sci. V. 22: P. 4039. https://doi.org /10.3390/ijms22084039
  62. Xue Y., Nie D., Wang L.J., Qiu H.C., Ma L., Dong M.X., Tu W.J., Zhao J. 2021. Microglial polarization: novel therapeutic strategy against ischemic stroke. Aging Dis. V. 12. P. 466.
  63. Yamate J, Izawa T, Kuwamura M. J 2023. Macrophage pathology in hepatotoxicity. Toxicol. Pathol. V. 36. P. 51. https://doi.org /10.1293/tox.2022-0112
  64. Yang L., Xiao L., Gao W., Huang X., Wei F., Zhang Q., Xiao Y. 2021. Macrophages at low-inflammatory status improved osteogenesis via autophagy regulation. Tiss. Eng. Part. A. P. 021.
  65. Yao K., Zhao Y.F. 2018. Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice. Exp. Gerontol. V. 111. P. 86.
  66. Yuan Y., Li L., Zhu L., Liu F., Tang X., Liao G., Liu J., Cheng J., Chen Y., Lu Y. 2020. Mesenchymal stem cells elicit macrophages into M2 phenotype via improving transcription factor EB-mediated autophagy to alleviate diabetic nephropathy. Stem Cells. V. 38. P. 639.
  67. Zhang Q., Sioud M. 2023. Tumor-associated macrophage subsets: shaping polarization and targeting. Int. J. Mol. Sci. V. 24: 7493.
  68. doi: 10.3390/ijms24087493
  69. Zubova S.G., Suvorova I.I., Karpenko M.N. 2022. Macrophage and microglia polarization: focus on autophagy-dependent reprogramming. Front Biosci. (Schol Ed). V. 14: 3. doi: 10.31083/j.fbs1401003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of classical M1 (pro-inflammatory) and alternative M2 (anti-inflammatory) activation of macrophages. Rapamycin is an immunosuppressant derived from Streptomyces hygroscopicus, an autophagy activator (AF), its target is the kinase protein complex mTORC1; resveratrol is a natural phytoalexin, an autophagy activator: chloroquine is a drug from the 4-aminoquinoline group, an autophagy inhibitor, blocks autophagosome to lysosome binding. The pro-inflammatory phenotype of macrophages is characterized by glycolysis, while the anti-inflammatory phenotype is characterized by oxidative phosphorylation. Classically activated macrophages secrete proinflammatory cytokines (IL6, IL1α, IL1β, IL12, TNFα) upon receptor activation, particularly to lipopolysaccharide (LPS) and IFNγ. Classically activated macrophages synthesize reactive oxygen species (ROS). Alternatively, activated macrophages secrete anti-inflammatory cytokines (IL4, IL10, IL12, TGFβ) upon receptor activation, e.g. to IL4, IL13, IL10

Download (214KB)
3. Fig. 2. Autophagy regulatory pathways. Autophagy (AF) is activated in the absence of growth factors, such as under starvation conditions. AF is inhibited by enhanced growth factor signaling through the PI3 group of class I and Akt kinases to stimulate mTORC1 activity by inhibiting the TSC1/TSC2 complex and increasing Rheb GTPase activity. The process of AF begins with phagophore formation. It is negatively regulated by the serine-threonine specificity protein kinase mTORC1. Under nutrient deficiency, mTORC1 dissociates from the ULK1 complex, and ULK1 is activated and phosphorylates FIP200, which triggers phagophore formation; a preinitiator complex consisting of ULK1, FIP200, and Atg13 is formed. Assembly of this complex is required for activation of the initiation complex (Beclin 1, VPS15 and VPS34, which generates PI3P and recruits Atg7 to the phagophore surface). This activates two conjugation systems involving Atg family proteins (Atg5, Atg7, Atg10, Atg12, etc.) These protein interactions are required for autophagosome closure and maturation. The LC3-I protein then forms a complex with phosphatidylethanolamine (PE) and generates a form of LC3-II that binds to the outer and inner membrane of the autophagosome. This is required for fusion with the lysosome of the formed autophagosome. The autophagolysosome content is then degraded. In the presence of nutrients, mTORC1 kinase can phosphorylate the transcription factor TFEB and inhibit its activity, but TFEB becomes hypophosphorylated and localizes to the nucleus when nutrient and energy levels are low. While in the nucleus, TFEB activates lysosomal and autophagic genes

Download (564KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies