The role of the Rho family small GTPases in regulation of normal and pathological processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Small GTPases are small (about 21 kDa) proteins that regulate many biological processes, such as vesicle transport, cell division cycle, cell migration, invasion, adhesion, proliferation and DNA repair, they are involved in carcinogenesis and neurodegenerative diseases. Some of these proteins, like those in the Rho family, are important regulators of the actin cytoskeleton, which has an impact on cell adhesion and motility. The review considers normal and pathological processes in human cells, which are regulated by the Rho family small GTPases. Particular attention is paid to inhibitors of small GTPases and their use in the treatment of various diseases.

Full Text

Restricted Access

About the authors

D. E. Bobkov

Institute of Cytology RAS; Almazov National Medical Research Centre; Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: bobkov@incras.ru
Russian Federation, St. Petersburg; St. Petersburg; St. Petersburg

A. V. Lukacheva

Institute of Cytology RAS

Email: bobkov@incras.ru
Russian Federation, St. Petersburg

A. I. Gorb

Peter the Great St. Petersburg Polytechnic University

Email: bobkov@incras.ru
Russian Federation, St. Petersburg

G. G. Poljanskaya

Institute of Cytology RAS

Email: bobkov@incras.ru
Russian Federation, St. Petersburg

References

  1. Полянская Г.Г. 2018. Сравнительный анализ характеристик линий мезенхимных стволовых клеток человека, полученных в коллекции культур клеток позвоночных (обзор). Клеточные культуры, вып. 34. C. 3. (Poljanskaya G.G. 2018. Comparative analysis of the lines of human mesenchymal stem cells derived in the collection of cell cultures of vertebrates (review). Collection “Cell cultures”. No. 34. P. 3).
  2. Прайс К.М. 1997. Синтез теломерной С-цепи. Биохимия. Т. 62. № 11. С. 1423. (Price C.M. 1997. Synthesis of telomeric C-strand. Biochemistry (Moscow). V. 62. P. 1423).
  3. Хейфлик Л. 1997. Смертность и бессмертие на клеточном уровне. Биохимия. Т. 62. № 11. С. 1380. (Hayflick L. 1997. Mortality and immortality at the cellular level. Biochemistry (Moscow). V. 62. P. 1380).
  4. Abbhi V., Piplani P. 2020. Rho-kinase (ROCK) inhibitors-a neuroprotective therapeutic paradigm with a focus on ocular utility. Curr. Med. Chem. V. 27. P. 2222. https://doi.org/10.2174/0929867325666181031102829
  5. Aguilar B. J., Zhao Y., Zhou H., Huo S., Chen Y.H., Lu Q. 2019. Inhibition of Cdc42–intersectin interaction by small molecule ZCL367 impedes cancer cell cycle progression, proliferation, migration, and tumor growth. Cancer Biol. Ther. V. 20 P. 740. https://doi.org/10.1080/15384047.2018.1564559
  6. Al-Azab M., Safi M., Idiiatullina E., Al-Shaebi F., Zaky M. 2022. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell. Mol. Biol. Lett. V. 27. P. 69. https://doi.org/10.1186/s11658-022-00366-0
  7. Al-Koussa H., Atat O.E., Jaafar L., Tashjian H., El-Sibai M. 2020. The role of Rho GTPases in motility and invasion of glioblastoma cells. Anal. Cell. Pathol. V. 2020. P. 9274016. https://doi.org/10.1155/2020/9274016
  8. Amano M., Nakayama M., Kaibuchi K. 2010. Rho‐kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton, V. 67 P. 545. https://doi.org/ 10.1002/cm.20472
  9. Aslam M., Troidl C., Tanislav C., Rohrbach S., Gündüz D., Hamm, C.W. 2019. Inhibition of protein prenylation of GTPases alters endothelial barrier function. Int. J. Mol. Sci. V. 21. P. 2. https://doi.org/10.3390/ijms21010002
  10. Barbalata C.I., Tefas L.R., Achim M., Tomuta I., Porfire, A.S. 2020. Statins in risk-reduction and treatment of cancer. J. Clin. Oncol. V. 11. P. 573. https://doi.org/10.5306/wjco.v11.i8.573
  11. Barth H., Fischer S., Möglich A., Förtsch, C. 2015. Clostridial C3 toxins target monocytes/macrophages and modulate their functions. Front. Immunol. V. 6. P. 339. https://doi.org/10.3389/fimmu.2015.00339
  12. Berthold J., Schenková K., Ramos S., Miura Y., Furukawa M., Aspenström P., Rivero F. 2008. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes — evidence for an autoregulatory mechanism. Exp. Cell Res. V. 314. P. 3453. https://doi.org/10.1016/j.yexcr.2008.09.005
  13. Bobkov D., Polyanskaya A., Musorina A., Poljanskaya G. 2022. The RhoA nuclear localization changes in replicative senescence: new evidence from in vitro human mesenchymal stem cells studies. Biocell. V. 46. P. 2053. https://doi.org/10.32604/biocell.2022.019469
  14. Bobkov D., Polyanskaya A., Musorina A., Lomert E., Shabelnikov S. 2020. Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization. Mol. Biol. Rep. V. 47. P. 3867. https://doi.org/10.1007/s11033-020-05476-6
  15. Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science. V. 279. P. 349. https://doi.org/10.1126/science.279.5349.349
  16. Bolick S. C.E., Landowski T.H., Boulware D., Oshiro M.M., Ohkanda J., Hamilton A.D., Sebti S.M., Dalton W.S. 2003. The farnesyl transferase inhibitor, FTI-277, inhibits growth and induces apoptosis in drug-resistant myeloma tumor cells. Leukemia. V. 17. P. 451.
  17. Bos J.L., Rehmann H., Wittinghofer A. 2007. GEFs and GAPs: critical elements in the control of small G proteins. Cell. V. 129. P. 865. https://doi.org/10.1016/j.cell.2007.05.018
  18. Cabrera M., Echeverria E., Lenicov F.R., Cardama G., Gonzalez N., Davio C., Fernández N., Menna P.L. 2017. Pharmacological Rac1 inhibitors with selective apoptotic activity in human acute leukemic cell lines. Oncotarget, V. 8: 98509. https://doi.org/10.18632/oncotarget.21533
  19. Cai R., Wang Y., Huang Z., Zou Q., Pu Y., Yu C., Cai Z. 2021. Role of RhoA/ROCK signaling in Alzheimer’s disease. Behav. Brain Res. V. 414: 113481. https://doi.org/10.1016/j.bbr.2021.113481
  20. Cardama G. A., Gonzalez N., Ciarlantini M., Gandolfi Donadío, L., Comin M. J., Alonso D. F., Menna P. L., Gomez D. E. 2014. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells. Onco Targets Ther. V. 2021-2033. https://doi.org/ 10.2147/OTT.S67998
  21. Chen Y., Wang X., Wu Z., Jia S., Wan M. 2023. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. Peer J. V. 11: 14550. https://doi.org/10.7717/peerj14550
  22. Chircop M. 2014. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases. V. 5: e29770. https://doi.org/10.4161/sgtp.29770
  23. Comunale F., Causeret M., Favard C., Cau J., Taulet N., Charrasse S., Gauthier-Rouvière C. 2007. Rac1 and RhoA GTPases have antagonistic functions during N-cadherin-dependent cell-cell contact formation in C2C12 myoblasts. Biol. Cell. V. 99. P. 503. https://doi.org/ 10.1042/BC20070011
  24. Cordover E., Wei, J., Patel C., Shan N. L., Gionco J., Sargsyan D., Wu R., Cai L., Kong A., Jacinto E., Minden A. 2019. KPT-9274, an inhibitor of PAK4 and NAMPT, leads to downregulation of mTORC2 in triple negative breast cancer cells. Chem. Res. Toxicol. V. 33. P. 482.
  25. Crosas-Molist E., Samain R., Kohlhammer L., Orgaz J. L., George S. L., Maiques O., Barcelo J., Sanz-Moreno V. 2022. Rho GTPase signaling in cancer progression and dissemination. Physiol. Rev. V. 102. P. 455.
  26. De Curtis I., Meldolesi J. 2012. Cell surface dynamics-how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. J. Cell. Sci. V. 125. P. 4435. https://doi.org/10.1242/jcs.108266
  27. Debidda M., Williams D. A., Zheng Y. 2006. Rac1 GTPase regulates cell genomic stability and senescence. J. Biol. Chem. V. 281. P. 38519.
  28. Dharmawardhane S., Hernandez E., Vlaar C. 2013. Development of EHop-016: a small molecule inhibitor of Rac. The Enzymes. V. 33. P.117.
  29. Diep D. T. V., Hong K., Khun T., Zheng M., Ul-Haq A., Jun H. S., Kim Y.B., Chun K. H. 2018. Anti-adipogenic effects of KD025 (SLx-2119), a ROCK2-specific inhibitor, in 3T3-L1 cells. Sci. Rep. V. 8. P. 2477. https://doi.org/10.1038/s41598-018-20821-3
  30. Dill J., Patel, A. R., Yang X. L., Bachoo R., Powell C. M., Li S. 2010. A molecular mechanism for ibuprofen-mediated RhoA inhibition in neurons. J. Neurosci. V. 30. P. 963.
  31. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. Int. Soc. Cell. Ther. Position Statement. Cytother. V. 8. P. 315.
  32. Dubash A. D., Guilluy C., Srougi M. C., Boulter E., Burridge K., García-Mata R. 2011. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PloS One. V. 6: 7380. https://doi.org/10.1371/journal.pone.0017380
  33. East M. P., Asquith C. R. 2021. CDC42BPA/MRCK [alpha]: a kinase target for brain, ovarian and skin cancers. Nat. Rev. Drug Discov. V. 20. P. 167. https://doi.org/10.1038/d41573-021-00023-9
  34. Ellenbroek S. I., Collard J. G. 2007. Rho GTPases: functions and association with cancer. Clin. Exp. Metastasis. V. 24. P. 657.
  35. Florian M. C., Dörr K., Niebel A., Daria D., Schrezenmeier H., Rojewski M., Filippi M.D., Hasenberg A., Gunzer M., Scharffetter-Kochanek K., Zheng Y., Geiger H. 2012. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. V. 10. P. 520. https://doi.org/10.1016/j.stem.2012.04.007
  36. Florian M. C., Klenk J., Marka G., Soller K., Kiryakos H., Peter R., Herbolsheimer F., Rothenbacher D., Denkinger M., Geiger H. 2017. Expression and activity of the small RhoGTPase Cdc42 in blood cells of older adults are associated with age and cardiovascular disease. J. Gerontol. A. Biol. Sci. Med. Sci. V. 72. P. 1196. https://doi.org/10.1093/gerona/glx091
  37. Gilkes D. M., Xiang L., Lee S. J., Chaturvedi P., Hubbi M. E., Wirtz D., Semenza G. L. 2014. Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc. Natl. Acad. Sci. USA. V. 111. P. 384.
  38. Goh L. L., Manser E. 2012. The GTPase-deficient Rnd proteins are stabilized by their effectors. J. Biol. Chem. V. 287. P. 31311.
  39. Goodman K.B., Cui H., Dowdell S.E., Gaitanopoulos D.E., Ivy R.L., Sehon C.A., Stavenger R.A., Wang G.Z., Viet A.Q, Xu W., Ye G., Semus S.F., Evans C., Fries H.E., Jolivette L.J., et al. 2007. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors. J. Med. Chem. V. 50. P. 6.
  40. Gray J.L., von Delft F., Brennan P.E. 2020. Targeting the small GTPase superfamily through their regulatory proteins. Angew. Chem. Int. Ed. V. 59. P. 6342. https://doi.org/10.1002/anie.201900585
  41. Guiler W., Koehler A., Boykin C., Lu Q. 2021. Pharmacological modulators of small GTPases of rho family in neurodegenerative diseases. Front. Cell. Neurosci. V. 15. P. 661612. https://doi.org/10.3389/fncel.2021.661612
  42. Guo Y., Kenney S.R., Muller C.Y., Adams S., Rutledge T., Romero E., Murray-Krezan C., Prekeris R., Sklar L.A., Hudson L.G., Wandinger-Ness A. 2015. R-Ketorolac targets Cdc42 and Rac1 and alters ovarian cancer cell behaviors critical for invasion and metastasis. Mol. Cancer Ther. 2015. V. 14. P. 2215. https://doi.org/10.1158/1535-7163.MCT-15-0419
  43. Haga R. B., Ridley A. J. 2016. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. V. 7. P. 207. https://doi.org/10.1080/21541248.2016.1232583
  44. Hanna S., El-Sibai M. 2013. Signaling networks of Rho GTPases in cell motility. Cell. Signal. V. 25. P. 1955. https://doi.org/10.1016/j.cellsig.2013.04.009
  45. Hervé JC., Bourmeyster N. 2015. Rho GTPases at the crossroad of signaling networks in mammals. Small GTPases. V. 6. P. 43. https://doi.org/10.1080/21541248.2015.1044811
  46. Hezan K., Mo R., Wang C., Yue L., Zongjin L. 2022. Anti-inflammatory effects of mesenchymal stem cells and their secretomes in Pneumonia. Curr. Pharm. Biotechnol. V. 23. P. 1153. https://doi.org/10.2174/1389201022666210907115126
  47. Hinde E., Yokomori K., Gaus K., Hahn K.M., Gratton E., 2014. Fluctuation-based imaging of nuclear Rac1 activation by protein oligomerisation. Sci. Rep. 2014. V. 4. P. 4219. https://doi.org/10.1038/srep04219
  48. Ho A.L., Brana I., Haddad R., Bauman J., Bible K., Oosting S., Wong D.J., Ahn M., Boni V., Even C., Fayette J., MD, Flor M.J., Harrington K., Hong D.S., Kim S.B., et al. 2021. Tipifarnib in head and neck squamous cell carcinoma with HRAS mutations. J. Clin. Oncol. V. 39. P. 1856. https://doi.org/10.1200/JCO.20.02903
  49. Hodge R.G., Ridley A.J. 2016. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 2016. V. 17. P. 496. https://doi.org/10.1038/nrm.2016.67
  50. Hong L., Kenney S.R., Phillips G.K., Simpson G., Schroeder C.E., Nöth J., Romero E., Swanson S., Waller A., Strouse J.J., Carter M., Chigaev A., Ursu O., Oprea T., Hjelle B. 2013. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J. Biol. Chem. V. 288. P.8531.
  51. Humphries-Bickley T., Castillo-Pichardo L., Hernandez-O’Farrill E., Borrero-Garcia L.D., Forestier-Roman I., Gerena Y., Blanco M., Rivera-Robles M., Rodriguez-Medina J.R., Cubano L.A., Vlaar C.P., Dharmawardhane S. 2017. Characterization of a Dual Rac/Cdc42 Inhibitor MBQ-167 in Metastatic Cancer MBQ-167, a Rac/Cdc42 inhibitor in breast cancer cells. Mol. Cancer Ther. V. 16. P. 805. https://doi.org/10.1158/1535-7163.MCT-16-0442
  52. Humphries B., Wang Z., Yang C. 2020. Rho GTPases: big players in breast cancer initiation, metastasis and therapeutic responses. Cells. V. 9. P. 2167. https://doi.org/10.3390/cells9102167
  53. Hwang K.C., Kim J.Y., Chang W., Kim D.S., Lim S., Kang S.M., Kim D.W. 2008. Chemicals that modulate stem cell differentiation. Proc. Natl. Acad. Sci. USA. V. 105. P. 7467.
  54. Jaffe A.B., Hall A. 2005. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 2005. V. 21. P. 247.
  55. Jayasinghe M., Prathiraja O., Prashan B., Jena R., Silva M., Weerawarna P., Singhal M., Kayani A., Karnakoti S., Jain S. 2022.The role of mesenchymal stem cells in the treatment of type 1 diabetes. Cureus. V. 14. P. e27337. https://doi.org/10.7759/cureus.27337
  56. Jim Leu S.J., Sung J.S., Huang M.L., Chen M.Y., Tsai T.W. 2013. A novel anti-CCN1 monoclonal antibody suppresses Rac-dependent cytoskeletal reorganization and migratory activities in breast cancer cells. Biochem. Biophys. Res. Commun. 2013. V. 434. P. 885.
  57. Yung Y.C., Stoddard N.C., Chun J. 2014. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res. V. 55. P. 1192.
  58. Kale V.P., Hengst J.A., Desai DH, Dick T.E., Choe K.N., Colledge A.L., Takahashi Y., Sung S.S., Amin S.G., Yun G.K. 2014. A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer Letters. V. 354. P. 299.
  59. Kaneko Y., Ohta M., Inoue T., Mizuno K., Isobe T., Tanabe S., Tanihara H. 2016. Effects of K-115 (Ripasudil), a novel ROCK inhibitor, on trabecular meshwork and Schlemm’s canal endothelial cells. Sci. Rep. V. 6. P. 1. https://doi.org/10.1038/srep19640
  60. Kast R., Schirok H., Figueroa-Pérez S., Mittendorf J., Gnoth M.J., Apeler H., Lenz J., Franz J. K., Knorr A., Hütter J., Lobell M., Zimmermann K., Münter K., Augstein H., Ehmke H., Staschet J.P. 2007. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase. Br. J. Pharmacol. V. 152. P. 1070.
  61. Kent D.G., Copley M.R., Benz C., Wöhrer S., Dykstra B.J., Ma E., Eaves C.J. 2009. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood. V. 113. P. 6342.
  62. Kerber R.A., O’Brien E., Cawthon R.M. 2009. Gene expression profiles associated with aging and mortality in humans. Aging Cell. 2009. V. 8. P. 239. https://doi.org/10.1111/j.1474-9726.2009.00467.x
  63. Kim J., Islam R., Cho J.Y., Jeong H., Cap K.C., Park Y., Hossain A.J., Park J.B. 2018. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J. Cell. Physiol. V. 233 P. 6381.
  64. Kristó I., Bajusz I., Bajusz C., Borkúti P., Vilmos P. 2016. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem. Cell Biol. V. 145. P. 373.
  65. Lanning C.C., Daddona J.L., Ruiz-Velasco R., Shafer S.H., Williams C.L. 2004. The Rac1 C-terminal polybasic region regulates the nuclear localization and protein degradation of Rac1. J. Biol. Chem. V. 279. P. 44197.
  66. Lawson C.D., Ridley A.J. 2018. Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. V. 217. P. 447.
  67. Lee K.H., Koh M., Moon A. 2016. Farnesyl transferase inhibitor FTI-277 inhibits breast cell invasion and migration by blocking H-Ras activation. Oncol. Lett. V. 12. P. 2222. https://doi.org/10.3892/ol.2016.4837
  68. Leins H., Mulaw M., Eiwen K., Sakk V., Liang Y., Denkinger M., Geiger H., Schirmbeck R. 2018. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood. V. 132. P. 565.
  69. Li C., Zhen G., Chai Y., Xie L., Crane J. L., Farber E., Wan M. 2016. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nat. Commun. V. 7. P. 11455. https://doi.org/10.1038/ncomms11455
  70. Liao J. K., Seto M., Noma K. 2007. Rho kinase (ROCK) inhibitors. J. Cardiovasc. Pharmacol. V. 50. P. 17.
  71. Lin B. J., Tsao S. H., Chen A., Hu S. K., Chao L., Chao P. H. G. 2017. Lipid rafts sense and direct electric field-induced migration. Proc. Natl. Acad. Sci. USA. V. 114. P. 8568.
  72. Lin T., Ambasudhan R., Yuan X., Li W., Hilcove S., Abujarour R., Ding S. 2009. A chemical platform for improved induction of human iPSCs. Nat. Methods. V. 6. P. 805. https://doi.org/10.1038/nmeth.1393
  73. Linseman D. A., Lu Q. 2023. Rho family GTPases and their effectors in neuronal survival and neurodegeneration. Front. Cell. Neurosci. V. 17. P. 67.
  74. Liu Y., Schwam J., Chen Q. 2022. Senescence-associated cell transition and internation (SACTAI): a proposed mechanism for tissue aging, repair and degeneration. Cells. V. 11. P. 1089. https://doi.org/10.3390/cells11071089
  75. Liu H. W., Halayko A. J., Fernandes D. J., Harmon G. S., McCauley J. A., Kocieniewski P., Solway J. 2003. The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am. J. Physiol. Lung Cell Mol. Physiol. V. 29. P. 39.
  76. Löhn M., Plettenburg O., Ivashchenko Y., Kannt A., Hofmeister A., Kadereit D., Ruetten H. 2009. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension. V. 54. P. 676. https://doi.org/ 10.1161/HYPERTENSIONAHA.109.134353
  77. Loirand G., Guérin P., Pacaud P. 2006. Rho kinases in cardiovascular physiology and pathophysiology. Circ. Res. V. 98. P. 322.
  78. Ma N., Xu E., Luo Q., Song G. 2023. Rac1: A regulator of cell migration and a potential target for cancer therapy. Molecules. V. 28. P. 2976. https://doi.org/ 10.3390/molecules28072976
  79. Magalhaes Y. T., Farias J. O., Silva L. E., Forti F. L. 2021. GTPases, genome, actin: a hidden story in DNA damage response and repair mechanisms. DNA repair. V. 100: 103070. https://doi.org/ 10.1016/j.dnarep.2021.103070
  80. Maldonado M. D. M., Dharmawardhane S. 2018. Targeting rac and Cdc42 GTPases in cancer. Cancer Res. V. 78. P. 3101.
  81. Maldonado M. D. M., Medina J. I., Velazquez L., Dharmawardhane S. 2020. Targeting Rac and Cdc42 GEFs in metastatic cancer. Front. Cell Dev. Biol. V. 8. P. 201. https://doi.org/ 10.3389/fcell.2020.00201
  82. Malhi M., Norris M. J., Duan W., Moraes T. J., Maynes J. T. 2021. Statin-mediated disruption of Rho GTPase prenylation and activity inhibits respiratory syncytial virus infection. Commun. Biol. V. 4. P. 1239. https://doi.org/10.1038/s42003-021-02754-2
  83. Matsumura T., Zerrudo Z., Hayflick L. 1979. Senescent human diploid cells in culture: survival, DNA synthesis and morphology. J. Gerontol. V. 34. P. 328.
  84. McLeod R., Kumar R., Papadatos-Pastos D., Mateo J., Brown J. S., Garces A. H. I., Banerji U. 2020. First-in-human study of AT13148, a dual ROCK-AKT inhibitor in patients with solid tumors. Clin. Cancer Res. V. 26. P. 4777. https://doi.org/10.1158/1078-0432.CCR-20-0700
  85. Mizukawa B., Wei J., Shrestha M., Wunderlich M., Chou F. S., Griesinger A., Mulloy J. C. 2011. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood. V. 118. P. 5235.
  86. Mohseni R., Shoae‐Hassani A., Verdi J. 2015. Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs. Int. J. Cell Biol. V. 39. P. 515. https://doi.org/10.1002/cbin.10411
  87. Moissoglu K., Schwartz M.A. 2014. Spatial and temporal control of Rho GTPase functions. Cell. Logist. V. 4: e943618. https://doi.org/10.4161/21592780.2014.943618
  88. Mosaddeghzadeh N., Ahmadian M.R. 2021 The Rho family GTPases: mechanisms of regulation and signaling. Cells. 2021. V. 10. P. 1831. https://doi.org/10.3390/cells10071831
  89. Mou C., Wang X., Li W., Li Z., Liu N., Xu Y. 2023. Efficacy of mesenchymal stromal cells intraspinal transplantation for patients with different degrees of spinal cord injury: a systematic review and meta-analysis. Cytotherapy. V. 25. P. 530. https://doi.org/10.1016/j.jcyt.2023.01.012
  90. Narumiya S., Ishizaki T., Ufhata M. 2000. Use and properties of ROCK-specific inhibitor Y-27632. Meth. Enzymol. V. 325. P. 273.
  91. Narumiya S., Thumkeo D. 2018. Rho signaling research: history, current status and future directions. FEBS lett. V. 592. P. 1763.
  92. Navarro L., Chen X., Viviescas L.T., Ardila-Roa A., Luna-Gonzalez M., Sossa C., Arango-Rodriguez M. 2022. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res. Ther. V. 13. P. 345. https://doi.org/10.1186/s13287-022-03043-3
  93. Navarro-Lérida I., Sánchez-Álvarez M., del Pozo M.Á., 2021. Post-translational modification and subcellular compartmentalization: emerging concepts on the regulation and physiopathological relevance of RhoGTPases. Cells. 2021. V. 10. P. 1990. https://doi.org/10.3390/cells10081990
  94. Nguyen L. K., Kholodenko B. N., Von Kriegsheim A. 2018. Rac1 and RhoA: networks, loops and bistability. Small GTPases. V. 9. P. 316. https://doi.org/10.1080/21541248.2016.1224399
  95. Okura H., Golbourn B. J., Shahzad U., Agnihotri S., Sabha N., Krieger J. R., Rutka J. T. 2016. A role for activated Cdc42 in glioblastoma multiforme invasion. Oncotarget. V. 7. P. 56958.
  96. https://doi.org/10.18632/oncotarget.10925
  97. Onesto C., Shutes A., Picard V., Schweighoffer F., Der C. J. 2008. Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Meth. Enzymol. V. 439. P. 111.
  98. Özcan S., Alessio N., Acar M.B., Mert E., Omerli F., Peluso G., Galderisi U. 2016. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). V. 8. P. 1316. https://doi.org/10.18632/aging.100971
  99. Park S., Kim D., Jung Y. G., Roh S. 2015. Thiazovivin, a Rho kinase inhibitor, improves stemness maintenance of embryo-derived stem-like cells under chemically defined culture conditions in cattle. Anim. Reprod. Sci. V. 161. P. 47. https://doi.org/10.1016/j.anireprosci.2015.08.003
  100. Patel R. A., Forinash K. D., Pireddu R., Sun Y., Sun N., Martin M. P., Sebti S. M. 2012. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer RKI-1447, a potent ROCK inhibitor with antitumor activity. Cancer Res. V. 72. P. 5025. https://doi.org/10.1158/0008-5472.CAN-12-0954
  101. Pawelec G. P. 2018. CASIN the joint: immune aging at the stem cell level. Blood. The J. Am. Soc. Hematol. V. 132. P. 553.
  102. Payapilly A., Malliri A. 2018. Compartmentalisation of RAC1 signalling. Curr. Opin. Cell Biol. 2018. V. 54. P. 50. https://doi.org/ 10.1016/j.ceb.2018.04.009
  103. Pelish H. E., Peterson J. R., Salvarezza S. B., Rodriguez-Boulan E., Chen J. L., Stamnes M., Kirchhausen T. 2006. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat. Chem. Biol. V. 2. P. 39. https://doi.org/ 10.1038/nchembio751
  104. Pischiutta F., Caruso E., Cavaleiro H., Salgado A., Loane D.,Zanier E. 2022. Mesenchymal stromal cell secretome for traumatic brain injury: Focus on immunomodulatory action. Exp. Neurol. V. 357: 114199. https://doi.org/ 10.1016/j.expneurol.2022.114199
  105. Poljanskaya G.G., Bobkov D.E., Koltsova A.M., Musorina A.S., Mikhailova N.A. 2022. Creation, working principles, development of applied and scientific activities of the Collection of cell cultures of vertebrate. (review). Bio. Comm. V. 67. P. 312. https://doi.org/10.21638/spbu03.2022.406
  106. Porter A. P., Papaioannou A., Malliri A. 2016. Deregulation of Rho GTPases in cancer. Small GTPases. V. 7. P. 123. https://doi.org/10.1080/21541248.2016.1173767
  107. Prieto-Dominguez N., Parnell C., Teng Y. 2019. Drugging the small GTPase pathways in cancer treatment: promises and challenges. Cells. V. 8. P. 255. https://doi.org/ 10.3390/cells8030255
  108. Qadir M. I., Parveen A., Ali M. 2015. Cdc42: role in cancer management. Chem. Biol. Drug Des. V. 86. P. 432.
  109. Rajakylä E.K., Vartiainen M.K. 2011. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases. 2014. V. 5. P. e27539. https://doi.org/ 10.4161/sgtp.27539
  110. Ramachandran C., Patil R. V., Combrink K., Sharif N. A., Srinivas S. P. 2011. Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork cells. Mol. Vision. V. 17. P. 1877. https://doi.org/ PMC3144732
  111. Rane C.K., Minden A. 2014. P21 activated kinases. Small GTPases. 2014. V. 5. P. e28003. https://doi.org/ 10.4161/sgtp.28003
  112. Ratushnyy A., Ezdakova M., Buravkova L. 2020. Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis. Int. J. Mol. Sci. V. 21. https://doi.org/10.3390/ijms21051802
  113. Ren R., Humphrey A. A., Kopczynski C., Gong H. 2023. Rho kinase inhibitor AR-12286 reverses steroid-induced changes in intraocular pressure, effective filtration areas, and morphology in mouse eyes. Investig. Ophthalmol. Vis. Sci. V. 64. P. 7. https://doi.org/ 10.1167/iovs.64.2.7
  114. Ridley A.J. 2015. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 2015. V. 36. P. 103. https://doi.org/ 10.1016/j.ceb.2015.08.005
  115. Rotblat B., Ehrlich M., Haklai R., Kloog, Y. 2008. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Meth. Enzymol. V. 439. P. 467–489. https://doi.org/ 10.1016/S0076-6879(07)00432-6
  116. Sadok A., Marshall C.J. 2014. Rho GTPases: Masters of cell migration. Small GTPases. V. 5. P. e983878. https://doi.org/10.4161/sgtp.29710
  117. Sahai E., Olson M.F. 2006. Purification of TAT-C3 exoenzyme. Meth. Enzymol. V. 406. P. 128.
  118. Samsonraj R., Law S., Chandra A., Pignolo R. 2023. An unbiased proteomics approach to identify the senescence-associated secretory phenotype of human bone marrow-derived mesenchymal stem cells. Bone Rep. V. 18. P. 101674. https://doi.org/10.1016/j.bonr.2023.101674
  119. Sandrock K., Bielek H., Schradi K., Schmidt G., Klugbauer N. 2010. The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin α2. Traffic. V. 11. P. 198. https://doi.org/10.1111/j.1600-0854.2009.01015.x
  120. Santos G. L., Hartmann S., Zimmermann W. H., Ridley A., Lutz S. 2019. Inhibition of Rho-associated kinases suppresses cardiac myofibroblast function in engineered connective and heart muscle tissues. J. Mol. Cell. Cardiol. V. 134. P. 13. https://doi.org/10.1016/j.yjmcc.2019.06.015
  121. Santos J. C., Profitós-Pelejà N., Sánchez-Vinces S., Roué G. 2023. RHOA therapeutic targeting in hematological cancers. Cells. V. 12. P. 433. https://doi.org/10.3390/cells12030433
  122. Sarrabayrouse G., Pich C., Teiti I., Tilkin-Mariame A. F. 2017. Regulatory properties of statins and Rho GTPases prenylation inhibitors to stimulate melanoma immunogenicity and promote anti-melanoma immune response. Int. J. Cancer. V. 140. P. 747. https://doi.org/10.1002/ijc.30422
  123. Schmidt S. I., Blaabjerg M., Freude K., Meyer M. 2022. RhoA signaling in neurodegenerative diseases. Cells. V. 11. P. 1520. https://doi.org/10.3390/cells11091520
  124. Semenova E., Grudniak M. P. Machaj E.K., Bocian K., Chroscinska-Krawczyk M., Trochonowicz M., Stepaniec I.M., Murzyn M., Zagorska K.E., Boruczkowski D., Kolanowski T.J., Oldak T., Rozwadowska N. 2021. Mesenchymal stromal cells from different parts of umbilical cord: approach to comparison and characteristics. Stem Cell Rev. Rep. V. 17. P. 1. https://doi. 10.1007/s12015-021-10157-3
  125. Shan D., Chen L., Njardarson J.T., Gaul C., Ma X., Danishefsky S.J., Huang X.Y. 2005 Synthetic analogues of migrastatin that inhibit mammary tumor metastasis in mice. Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 3772.
  126. Shang X., Marchioni F., Evelyn C.R., Sipes N., Zhou X., Seibel W., Wortman M., Zheng Y., 2013. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 3155.
  127. Shang X., Marchioni F., Sipes N., Evelyn C. R., Jerabek-Willemsen M., Duhr S., Seibel W., Wortman M., Zheng Y. 2012. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem. Biol. V. 19. P. 699. https://doi.org/10.1016/j.chembiol.2012.05.009
  128. Shi J., Wei L. 2013. Rho kinases in cardiovascular physiology and pathophysiology: the effect of fasudil. J. Cardiovasc. Pharmacol. V. 62. https://doi.org/10.1097/FJC.0b013e3182a3718f
  129. Shimizu A., Nakayama H., Wang P., König C., Akino T., Sandlund J., Klagsbrun M. 2013. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of RhoA, cathepsin B, and cAMP-response element-binding protein. J. Biol. Chem. V. 288. P. 2210.
  130. Shin S.., Lee J.., Kwon Y., Park K-S., Jeong J-H., Choi S-J., Bang S., Chang J., Lee C. 2021. Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and Wharton’s jelly. Int. J. Mol. Sci. V. 22. P. 845. https://doi. 10.3390/ijms22020845
  131. Sousa A. Coelho P., Leite F., Teixeira C., Rocha A., Santos I., Baylina P., Fernandes R., Soares R., Costa R, Gomes A. 2023. Impact of umbilical cord mesenchymal stromal/stem cell secretome and cord blood serum in prostate cancer progression. Hum. Cell. V. 36. P. 1160.
  132. Spiering D., Hodgson L. 2011. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh. Migr. V. 5. P. 170. https://doi.org/10.4161/cam.5.2.14403
  133. Surviladze Z., Waller A., Wu Y., Romero E., Edwards B. S., Wandinger-Ness A., Sklar L. A. 2010. Identification of a small GTPase inhibitor using a high-throughput flow cytometry bead-based multiplex assay. J. Biomol. Screen. V. 15. P. 10. https://doi.org/10.1177/1087057109352240
  134. Szczepanowska J. 2009. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements. Acta Biochimica Polonica. V. 56. P. 225.
  135. Taniuchi K., Yokotani K., Saibara T. 2012. BART inhibits pancreatic cancer cell invasion by Rac1 inactivation through direct binding to active Rac1. Neoplasia. V. 14. P. 440. https://doi.org/10.1593/neo.12352
  136. Tong J., Li L., Ballermann B., Wang Z. 2016. Phosphorylation and activation of RhoA by ERK in response to epidermal growth factor stimulation. PLoS One. V. 11. P. e0147103. https://doi.org/10.1371/journal.pone.0147103
  137. Turano E., Scambi I., Virla F., Bonetti B., Mariotti R. 2023. Extracellular vesicles from mesenchymal stem cells: towards novel therapeutic strategies for neurodegenerative diseases. Int. J. Mol. Sci. V. 24. P. 2917. https://doi.org/10.3390/ijms24032917
  138. Turinetto V., Vitale E., Giachino C. 2016. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. Int. J. Mol. Sci. V. 17. P. 1164. https://doi.org/10.3390/ijms17071164
  139. Ueyama T., Geiszt M., Leto T.L. 2006. Involvement of Rac1 in activation of multicomponent Nox1-and Nox3-based NADPH oxidases. Mol. Cell. Biol. V. 26. P. 2160. https://doi.org/10.1128/MCB.26.6.2160-2174.2006
  140. Umbayev B., Yermekova A., Nessipbekova A., Syzdykova A., Askarova S. 2023. Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology. P. 1. https://doi.org/10.1007/s10522-022-10008-9
  141. Unbekandt M., Croft D. R., Crighton D., Mezna M., McArthur D., McConnell P., Olson M. F. 2014. A novel small-molecule MRCK inhibitor blocks cancer cell invasion. Cell Commun. Signal. V. 12. P. 1. https://doi.org/10.1186/s12964-014-0054-x
  142. Unsal-Kacmaz K., Ragunathan S., Rosfjord E., Dann S., Upeslacis E., Grillo M., Hernandez R., Mack F., Klippel A. 2012. The interaction of PKN3 with RhoC promotes malignant growth. Mol. Oncol. V. 6. P. 284. https://doi.org/10.1016/j.molonc.2011.12.001
  143. Van Aelst L., D’Souza-Schorey C. 1997. Rho GTPases and signaling networks. Genes Dev. V. 18. P. 2295. https://doi.org/10.1101/gad.11.18.2295.
  144. Van Buul J. D., Geerts D., Huveneers S. 2014. Rho GAPs and GEFs: controling switches in endothelial cell adhesion. Cell Adh. Migr. V. 8. P. 108. https://doi.org/10.4161/cam.27599
  145. Vidal C., Geny B., Melle J., Jandrot-Perrus M., Fontenay-Roupie M. 2002. Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK) regulates human platelet lamellipodia spreading: implication of the cortical-actin binding protein cortactin. Blood. V. 100. P. 4462.
  146. Wang L., Yang L., Tian L., Mai P., Jia S., Yang L., Li L. 2017. Cannabinoid receptor 1 mediates homing of bone marrow-derived mesenchymal stem cells triggered by chronic liver injury. J. Cell. Physiol. V. 232. P. 110.
  147. Williams C.L. 2003. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences. Cell. Signal. V. 15. P. 1071. https://doi.org/10.1016/s0898-6568(03)00098-6
  148. Xin Y. L., Yu J. Z., Yang X. W., Liu C. Y., Li Y. H., Feng L., Chai Z., Wan-Fang Yang W.F., Qing Wang Q., Jiang W. J., Zhang G.X., Xiao B.G., Ma C. G. 2015. FSD-C10: A more promising novel ROCK inhibitor than Fasudil for treatment of CNS autoimmunity. Bioscience Rep. V. 35. https://doi.org/10.1042/BSR20150032
  149. Xu J., Li Y., Yang X., Chen Y., Chen M. 2013. Nuclear translocation of small G protein RhoA via active transportation in gastric cancer cells. Oncol. Rep. V. 30. P. 1878. https://doi.org/10.3892/or.2013.2638
  150. Yang B., Radel C., Hughes D., Kelemen S., Rizzo V. 2011. p190 RhoGTPase-activating protein links the β1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler. Thromb. Vasc. Biol. V. 31. P. 376. https://doi.org/10.1161/ATVBAHA.110.217794
  151. Yang Y., Zhang W., Wang X., Yang J., Cui Y., Song H., Li W., Li W., Wu L., Du Y., He Z., Shi J., Zhang J. 2023. A passage-dependent network for estimating the in vitro senescence of mesenchymal stromal/stem cells using microarray, bulk and single cell RNA sequencing. Front. Cell Dev. Biol. V. 11: 998666. https://doi.org/10.3389/fcell.2023.998666
  152. Zhang Q. G., Wang R., Han D., Dong Y., Brann D. W. 2009. Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res. V. 1265. P. 138.
  153. Zhang Z., Liu M., Zheng Y. 2021. Role of Rho GTPases in stem cell regulation. Biochem. Soc. Trans. V. 49. P. 2941.
  154. https://doi.org/10.1042/BST20211071
  155. Zins K., Lucas T., Reichl P., Abraham D., Aharinejad S. 2013. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PloS one. V. 8. P. 74924. https://doi.org/10.1371/journal.pone.0074924

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies