Effect of Perinatal Hypoxia (Asphixia) on the Distribution of the α1 GABAA-Receptor Subunit in the Neocortex of Newborn Rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this work was to study the distribution of the α1 GABAA-receptor subunit in the neocortical layers of rats in the neonatal period after exposure to hypoxia. The effect of hypoxia on the brain of newborn rats was carried out on the 2nd neonatal day for 1 h at an oxygen content in the respiratory mixture of 7.8%. An immunohistochemical reaction was used to detect the α1 GABAA-receptor subunit. The quantitative protein content was estimated from the density of immunostaining of the reaction product in the cytoplasm and processes of neurons. The somatosensory area of the neocortex was studied on the 5th and 10th neonatal days (P5, P10). It has been established that in the neocortex there is a significant population of young neurons containing the α1 subunit, which is part of the GABAA-receptor in the early stages of the neonatal period. By the end of the neonatal period in control animals, the staining density of the product of reaction to the detection of GABAAα1 in the layers of the neocortex increases significantly. Exposure to perinatal hypoxia causes a reduction in the number of neurons containing the α1 GABAA-receptor subunit and a significant decrease in the density of immune staining in all layers of the neocortex.

About the authors

L. I. Khozhai

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: astarta0505@mail.ru
Russia, 199034, St. Petersburg

References

  1. Хожай Л.И., Отеллин В.А. 2020. Экспрессия субъединицы α1 ионотропного ГАМКА рецептора в неокортексе крыс после перинатальной гипоксии. Журн. эвол. Биохим. физиол. Т. 56. № 2. С. 75. (Khozhai L.I., Otellin V.A. 2020. Expression of the α1 subunit of the ionotropic GABAA-receptor in the neocortex of rats after perinatal hypoxia. J. Evol. Biochem. Physiol. 2020. V. 56. № 2. P. 75.) https://doi.org/10.31857/S0044452920020072
  2. Adotevi N., Su A., Peiris D., Hassan M., Leitch B. 2021. Altered neurotransmitter expression in the corticothalamocortical network of an absence epilepsy model with impaired feedforward inhibition. Neurosci. V. 467. P. 73. https://doi.org/10.1016/j.neuroscience.2021.05.024
  3. Bartolini G., Ciceri G., Marin O. 2013. Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron. V. 79. P. 849. https://doi.org/10.1016/j.neuron.2013.08.014
  4. Baulac S., Huberfeld G., Gourfinkel-An I., Mitropoulou G., Beranger A., Prud’homme J.-F., Baulac M., Brice A., Bruzzone R., Le Guern E. 2001. First genetic evidence of GABAA-receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. V. 28. P. 46. https://doi.org/10.1038.4267/10608/2027
  5. Baumann S.W., Baur R., Sigel E. 2001. Subunit arrangement of γ-aminobutyric acid type A receptors. J. Biol. Chemi. V. 276. P. 36275. https://doi.org/10.1074/jbc.M105240200
  6. Blatt G.J., Fitzgerald C.M., Guptill J.T., Booker A.B., Kemper T.L., Bauman M.L. 2001. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J. Autism Dev. Disorders. V. 31. P. 537. https://doi.org/10.1023/a:1013238809666
  7. Bandeira F., Lent R., Herculano-Houzel S. 2009. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc. Natl. Acad. Sci. USA. V 106. P. 14108. https://doi.org/10.1073/pnas.0804650106
  8. Blue M.E., Parnavelas J.G. 1983. The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. Neurocytol. V. 12. P. 599. https://doi.org/10.1007/BF01181526
  9. Buosi A.S., Matias I., Araujo A.P.B., Batista C., Gomes F.C.A. 2017. Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol. Neurobiol. V. 55. P. 751. https://doi.org/10.1007/s12035-016-0343-z
  10. Bushong E.A., Martone M.E., Ellisman M.H. 2004. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. V. 22. 73. https://doi.org/10.1016/j.ijdevneu.2003.12.008
  11. Crunelli V., Lorincz M.L., McCafferty C., Lambert R.C., Leresche N., Di Giovanni G., David F. 2020. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain. V. 143. P. 2341. https://doi.org/10.1093/brain/awaa072
  12. Dean J., McClendon E., Hansen K., Azimi-Zonooz A., Chen K., Riddle A., Gong X., Sharifnia E., Hagen M., Ahmad T., Leigland L., Hohimer A., Kroenke C., Back S. 2013. Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci. Transl. Med. V. 5: 168ra7. https://doi.org/10.1126/scitranslmed.3004669
  13. Deidda G., Allegra M., Cerri C., Naskar S., Bony G., Zunino G., Bozzi Y., Caleo M., Cancedda L. 2015. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat. Neurosci. V. 18. P. 87. https://doi.org/10.1038/nn.3890
  14. Delahanty R.J., Kang J.Q., Brune C.W., Kistner E.O., Courchesne E., Cox N.J., Cook E.H., Macdonald R.L., Sutcliffe J.S. 2011. Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Mol. Psychiatry. V. 16. P. 86. https://doi.org/10.1038/mp.2009.118
  15. Dvorzhak A., Myakhar O., Unichenko P., Kirmse K., Kirischuk S. 2010. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices. J. Physiol. V. 588. P. 2351. https://doi.org/10.1113/jphysiol.2010.187054
  16. Farhy-Tselnicker I., Allen N.J. 2018. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural. Dev. V. 13. P. 7. https://doi.org/10.1186/s13064-018-0104-y
  17. Farrant M., Nusser Z. 2005. Variations on an inhibitory theme: Phasic and tonic activation of GABAA-receptors. Nat. Rev. Neurosci. V. 6. P. 215. https://doi.org/10.1038/nrn1625
  18. Fatemi S.H., Reutiman T.J., Folsom T.D., Thuras P.D. 2009. GABAA-receptor down regulation in brains of subjects with autism. J. Autism Dev. Disorders. V. 39. P. 223. https://doi.org/10.1007/s10803-008-0646-7
  19. Feng Y., Wei Z.-H., Liu C., Li G.-Y., Qiao X.-Z., Gan Y.-J., Zhang C.-C., Deng Y.-C. 2022. Genetic variations in GABA metabolism and epilepsy. Seizure. V. 101. P. 22. https://doi.org/10.1016/j.seizure.2022.07.007
  20. Fritschy J.-M., Paysan J., Enna A., Mohler H. 1994. J. Neurosci. V. 14. P. 5302. https://doi.org/10.1523/JNEUROSCI.14-09-05302.1994
  21. Ge W.-P., Miyawaki A., Gage F.H., Jan Y.N., Jan L.Y. 2012. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. V. 484. P. 376. https://doi.org/10.1038/nature10959
  22. Gulledge A.T., Stuart G.J. 2003. Excitatory actions of GABA in the cortex. Neuron. V. 37. P. 299. https://doi.org/10.1016/s0896-6273(02)01146-7
  23. Guthmann A., Fritschy J.M., Ottersen O.P., Torp R., Herbert H. 1998. GABA, GABA transporters, GABAA-receptor subunits and GAD mRNAs in the rat parabrachial and Kolliker-Fuse nuclei. J. Comp. Neurol. V. 400. P. 229.
  24. Hales T.G., Deeb T.Z., Tang H., Bollan K.A., King D.P., Jhnson S.J., Connolly C.N. 2006. An asymmetric contribution to gamma-aminobutyric type A receptor function of a conserved lysine within TM2-3 of alpha1, beta2, and gamma2 subunits. J. Biol. Chem. V. 281. P. 17034. https://doi.org/10.1074/jbc.M603599200
  25. Hassan M., Adotevi N.K., Leitch B. 2022. Altered GABAA-receptor expression in the primary somatosensory cortex of a mouse model of genetic absence epilepsy. Intern. J. Mol. Sci. V. 23. P. 15685. https://doi.org/10.3390/ijms232415685
  26. Hernandez C.C., Macdonald R.L. 2019. A structural look at GABAA-receptor mutations linked to epilepsy syndromes. Brain Res. V. 1714. P. 234. https://doi.org/10.1016/j.brainres.2019.03.004
  27. Hevers W., Lüddens H. 1998. The diversity of GABAA-receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol. V. 18. P. 35. https://doi.org/10.1007/BF02741459
  28. Holmgren C.D., Mukhtarov M., Malkov A.E., Popova I.Y., Bregestovski P., Zilberter Y. 2010. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro. J. Neurochem. V. 112. P. 900. https://doi.org/10.1111/j.1471-4159.2009.06506.x
  29. Hou J., Eriksen N., Pakkenberg B. 2011. The temporal pattern of postnatal neurogenesis found in the neocortex of the Göttingen minipig brain. Neuroscience. V. 195. P. 176. https://doi.org/10.1016/j.neuroscience.2011.08.025
  30. Ignacio M.P., Kimm E.J., Kageyama G.H., Yu J., Robertson R.T. 1995. Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat. Embryol. (Berl). V. 191. P. 89. https://doi.org/10.1007/BF00186782
  31. Inada H., Watanabe M., Uchida T., Ishibash H., Wake H., Nemoto T., Yanagawa Y., Fukuda A., Nabekura J. 2011. GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS One. V. 6: e27048. https://doi.org/10.1371/journal.pone.0027048
  32. Jafarian M., Mousavi S.M.M., Rahimi S., Ghaderi P.F., Lotfinia A.A., Lotfinia M., Gorji A. 2021. The effect of GABAergic neurotransmission on the seizure-related activity of the laterodorsal thalamic nuclei and the somatosensory cortex in a genetic model of absence epilepsy. Brain Res. V. 1757. P. 47 304. https://doi.org/10.1016/j.brainres.2021.147304
  33. Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. 2015. Atlas of the postnatal rat brain in stereotaxic coordinates. Front. Neuroanat. V. 9. P. 161. https://doi.org/10.3389/fnana.2015.00161
  34. Klausberger T., Roberts J.D., Somogyi P. 2002. Cell type- and input-specific differences in the number and subtypes of synaptic GABAA-receptors in the hippocampus. J. Neurosci. V. 22. P. 2513. https://doi.org/10.1523/JNEUROSCI.22-07-02513.2002
  35. Klausberger T., Sarto I., Ehya N., Fuchs K., Furtmuller R., Mayer B., Huck S., Sieghart W. 2001. Alternate use of distinct intersubunit contacts controls GABAA-receptor assembly and stoichiometry. J. Neurosci. V. 21. P. 9124. https://doi.org/10.1523/JNEUROSCI.21-23-09124.2001
  36. Kralic J.E., Korpi E.R., O’Buckley T.K., Homanics G.E., Morrow A.L. 2002. Molecular and pharmacological characterization of GABAA-receptor alpha1 subunit knockout mice. J. Pharmacol. Exp. Ther. V. 302. P. 1037. https://doi.org/10.1124/jpet.102.036665
  37. Li M., Cui Z., Niu Y., Liu B., Fan W., Yu. D., Deng J. 2010. Synaptogenesis in the developing mouse visual cortex. Brain Res Bull. V. 81. P. 107. https://doi.org/10.1016/j.brainresbull.2009.08.028
  38. Marchetti C., Tabak J., Chub N., O’Donovan M.J., Rinzel J. 2015. Modeling spontaneous activity in the developing spinal cord using activity-dependent variations of intracellular chloride. J. Neurosci. V. 25. P. 3601. https://doi.org/10.1523/JNEUROSCI.4290-04.2005
  39. Marín-Padilla M. 1992. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. V. 321. P. 223. https://doi.org/10.1002/cne.903210205
  40. McClendon E., Kevin C., Gong X., Sharifnia E., Hagen M., Cai V., Shaver D., Riddle A., Dean J.M., Gunn A.J., Mohr C., Kaplan J.S., Rossi D.J., Kroenke C.D., Hohimer A.R., Back S.A. 2014. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann. Neurol. V. 75. P. 508. https://doi.org/10.1002/ana.24100
  41. Mohler H. 2006. GABAA-receptor diversity and pharmacology. Cell Tissue Res. V. 26. P. 505. https://doi.org/10.1007/s00441-006-0284-3
  42. Morita K., Tsumoto K., Aihara K. 2006. Bidirectional modulation of neuronal responses by depolarizing GABAergic inputs. J. Biophys. V. 90. P. 1925. https://doi.org/10.1529/biophysj.105.063164
  43. Namihira M., Kohyama J., Semi K., Sanosaka T., Deneen B., Taga T., Nakashima K. 2009. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell. V. 16. P. 245. https://doi.org/10.1016/j.devcel.2008.12.014
  44. Owens D.F., Liu X., Kriegstein A.R. 1999. Changing properties of GABAA-receptor-mediated signaling during early neocortical development. J. Neurophysiol. V. 82. P. 570. https://doi.org/10.1152/jn.1999.82.2.570
  45. Owens D.F., Kriegstein A.R. 2002. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. V. 3. P. 715. https://doi.org/10.1038/nrn919
  46. Otellin V.A., Khozhai L.I., Shishko T.T., Vershinina E.A. 2021. Nucleolar ultrastructure in neurons of the rat neocortical sensorimotor area during the neonatal period after perinatal hypoxia and its pharmacological correction. J. Evol. Biochem. Physiol. V. 57. P. 1251. https://doi.org/10.1134/S0022093021060053
  47. Paysan J., Fritschy J.M. 1998. GABAA-receptor subtypes in developing brain. Actors or spectators? Perspect. Dev. Neurobiol. V. 5. P. 179.
  48. Pirker S., Schwarzer C., Wieselthaler A., Sieghart W., Sperk G. 2000. GABAA-receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci. V. 101. P. 815. https://doi.org/10.1016/s0306-4522(00)00442-5
  49. Qin X., Pan X.-Q., Huang S.-H., Zou J.-X., Zheng Z.-H., Liu X.-X., You W.-J., Liu Z.-P., Cao J.-L., Zhang W.-H., Pan B.-X. 2022. GABAA-receptor hypofunction in the amygdala-hippocampal circuit underlies stress-induced anxiety. Sci. Bull. (Beijing). V. 67. P. 97. https://doi.org/10.1016/j.scib.2021.09.007
  50. Rudolph U., Mohler H. 2006. GABA-based therapeutic approaches: GABAA-receptor subtype functions. Curr. Opin. Pharmacol. V. 6. P. 18. https://doi.org/10.1016/j.coph.2005.10.003
  51. Schousboe A. 2016 Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci. Lett. V. 689. P. 11. https://doi.org/10.1016/j.neulet.2018.01.038
  52. Zhang Z., Jiao Y.-Y., Sun Q.-Q. 2011. Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex. Neurosci. V. 74. P. 10.
  53. https://doi.org/10.1016/j.neuroscience.2010.11.045

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)

Copyright (c) 2023 Л.И. Хожай

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies