Visualization of Escherichia coli Single Cells in the State of SOS Response Using Expansion Microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Expansion microscopy (ExM) is a sample preparation method that allows to achieve improved visualization of structures due to the physical expansion of the sample. This method is used in combination with traditional light microscopy and allows, without the use of complex technical devices typical for super-resolution microscopy, to achieve visualization of biological structures with higher resolution. Unlike the methods of super-resolution microscopy, expansion microscopy does not make it possible to overcome the diffraction limit; however, the observed effect can be considered equivalent to an increase in the spatial resolution. The relative simplicity of the method and the undemanding nature of the microscope used have made expansion microscopy a fairly popular method to visualize various biological structures last time. This paper describes the use of expansion microscopy to visualize DNA and structures formed by the FtsZ protein in Escherichia coli cells during the SOS response. The results of the work confirm the previously obtained data that the FtsZ protein in cells in the state of the SOS response is unevenly distributed. The protocol used in this work for visualization of E. coli cells preliminarily fixed on the glass surface using the expansion microscopy method can be used in the future to study the internal structures of other cells, both bacterial and eukaryotic.

About the authors

N. A. Rumyantseva

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”

Email: innvish@incras.ru
Russia, 195251, St. Petersburg

D. M. Golofeeva

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”

Email: innvish@incras.ru
Russia, 195251, St. Petersburg

I. E. Vishnyakov

Institute of Cytology RAS

Author for correspondence.
Email: innvish@incras.ru
Russia, 194064, St. Petersburg

A. D. Vedyaykin

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”

Email: innvish@incras.ru
Russia, 195251, St. Petersburg

References

  1. Деревцова К.З., Пчицкая Е.И., Раковская А.В., Безпрозванный И.Б. 2021. Применение метода экспансионной микроскопии в нейробиологии. Российский физиологический журнал им. И.М. Сеченова. Т. 107. № 4–5. С. 568. (Derevtsova K.Z., Pchitskaya E.I., Rakovskaya A.V., Bezprozvanny I.B. 2021. Applying the expansion microscopy method in neurobiology. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. V. 107. № 4–5. P. 568.)
  2. Клементьева Н.В., Загайнова Е.В., Лукьянов К.А., Мишин А.С. 2016. Принципы флюоресцентной микроскопии сверхвысокого разрешения (обзор). Современные технологии в медицине. Т. 8. С. 130. (Klementieva N.V., Zagaynova E.V., Lukyanov К.А., Mishin A.S. 2016. The Principles of super-resolution fluorescence microscopy (review). Sovremennye tehnologii v medicine. V. 8. P. 130.)
  3. Asano S.M., Gao R., Wassie A.T., Tillberg P.W., Chen F., Boyden E.S. 2018. Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr. Prot. Cell Biol. V. 80. P. e56. https://doi.org/10.1002/cpcb.56
  4. Chang J.-B., Chen F., Yoon Y.-G., Jung E.E., Babcock H., Kang J.S., Asano S., Suk H.-J., Pak N., Tillberg P.W., Wassie A.T., Cai D., Boyden E.S. 2017. Iterative expansion microscopy. Nat. Methods. V. 14. P. 593.
  5. Chen F., Tillberg P.W., Boyden E.S. 2015. Expansion microscopy. Science. V. 347. P. 543.
  6. Chen Y., Milam S.L., Erickson H.P. 2012. SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry. V. 51. P. 3100.
  7. Chozinski T.J., Halpern A.R., Okawa H., Kim H.-J., Tremel G.J., Wong R.O.L., Vaughan J.C. 2016. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods. V. 13. P. 485.
  8. Feng H., Wang X., Xu Z., Zhang X., Gao Y. 2018. Super-resolution fluorescence microscopy for single cell imaging. In: Single cell biomedicine. Singapore: Springer Singapore. P. 59.
  9. Li H., Warden A.R., He J., Shen G., Ding X. 2022. Expansion microscopy with ninefold swelling (NIFS) hydrogel permits cellular ultrastructure imaging on conventional microscope. Science Advances. V. 8. https://doi.org/10.1126/sciadv.abm4006
  10. Moore D.A., Whatley Z.N., Joshi C.P., Osawa M., Erickson H.P. 2017. Probing for binding regions of the FtsZ protein surface through site-directed insertions: discovery of fully functional FtsZ-fluorescent proteins. J. Bacteriol. V. 199. P. e00553-16. https://doi.org/10.1128/JB.00553-16
  11. Renz M. 2013. Fluorescence microscopy – a historical and technical perspective. Cytometry Part A. V. 83. P. 767.
  12. Sanderson M.J., Smith I., Parker I., Bootman M.D. 2014. Fluorescence microscopy. Cold Spring Harbor Protocols. V. 2014. P. pdb.top071795. https://doi.org/10.1101/pdb.top071795
  13. Tillberg P.W., Chen F., Piatkevich K.D., Zhao Y., Yu C.-C., English B.P., Gao L., Martorell A., Suk H.-J., Yoshida F., DeGennaro E.M., Roossien D.H., Gong G., Seneviratne U., Tannenbaum S.R., et al. 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotech. V. 34. P. 987.
  14. Vedyaykin A., Rumyantseva N., Khodorkovskii M., Vishnyakov I. 2020. SulA is able to block cell division in Escherichia coli by a mechanism different from sequestration. Biochim. Biophys. Res. Commun. V. 525. P. 948.
  15. Vedyaykin A.D., Sabantsev A.V., Vishnyakov I.E., Borchsenius S.N., Fedorova Y.V., Melnikov A.S., Serdobintsev P.Y., Khodorkovskii M.A. 2014. Localization microscopy study of FtsZ structures in E. coli cells during SOS-response. J. Phys. Conf. Ser. V. 541. P. 012036. https://doi.org/10.1088/1742-6596/541/1/012036
  16. Verma S.C., Qian Z., Adhya S.L. 2019. Architecture of the Escherichia coli nucleoid. PLoS Genet. V. 15. P. e1008456. https://doi.org/10.1371/journal.pgen.1008456
  17. Wassie A.T., Zhao Y., Boyden E.S. 2019. Expansion microscopy: principles and uses in biological research. Nat. Methods. V. 16. P. 33.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (325KB)
3.

Download (725KB)
4.

Download (270KB)
5.

Download (542KB)
6.

Download (384KB)
7.

Download (685KB)
8.

Download (697KB)

Copyright (c) 2023 Н.А. Румянцева, Д.М. Голофеева, И.Е. Вишняков, А.Д. Ведяйкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies