CRISPR/Cas9 Induced Duplications, Deletions and Inversions in Mouse Zygotes Lead to Karyotype Instability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

CRISPR/Cas9 technology has been widely used for targeted modification of the mammalian genomes. We have analyzed the karyotype of 18 mouse fibroblast cell lines with Cntn6 gene rearrangements introduced by CRISPR/Cas9. We have produced cell lines with 2374 kb Cntn6 gene duplications, 1137 kb deletions and inversions of similar size. In addition, we have performed cytogenetic analysis for five control mouse embryonic fibroblasts with the intact Cntn6 gene alleles. The cell lines heterozygous for Cntn6 gene inversion and homozygous and heterozygous for Cntn6 gene duplication had a high level of polyploidy (20–46%), as well as chromosome 6 monosomy (1–9%) and trisomy (1–8%). No trisomy was detected in the four cell lines with the deletion and duplication of the Cntn6 gene in the compound, and the proportion of polyploid cells was minimal (1.5–5.7%). Thus, we have shown the karyotype destabilization in the cell lines that have undergone genome editing using CRISPR/Cas9 system.

About the authors

J. M. Minina

Institute of Cytology and Genetics SB RAS

Author for correspondence.
Email: minina_jul@mail.ru
630090 Russia, Novosibirsk

A. B. Soroka

Moscow Institute of Physics and Technology

Email: minina_jul@mail.ru
141701 Russia, Dolgoprudny

T. V. Karamysheva

Institute of Cytology and Genetics SB RAS

Email: minina_jul@mail.ru
630090 Russia, Novosibirsk

N. A. Serdyukova

Institute of Molecular and Cellular Biology, SB RAS

Email: minina_jul@mail.ru
630090 Russia, Novosibirsk

O. L. Serov

Institute of Cytology and Genetics SB RAS

Email: minina_jul@mail.ru
630090 Russia, Novosibirsk

References

  1. Bolton H., Graham S.J.L., Niels V.D.A., Kumar P., Theunis K., Gallardo E.F., Voet T., Zernicka-Goetz M. 2016. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. V. 7. P. 11165.
  2. Boroviak K., Doe B., Banerjee R., Yang F., Bradley A. 2016. Chromosome engineering in zygotes with CRISPR/Cas9. Genesis. V. 54. P. 78.
  3. Ca L., Fisher A.L., Huang H., Xie Z. 2016. CRISPR-mediated genome editing and human diseases. Genes & Diseases. V. 3. P. 244.
  4. Canver M.C., Bauer D.E., Dass A., Yien Y.Y., Chung J., Masuda T., Maeda T., Paw B.H., Orkin S.H. 2017. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem. V. 292. P. 2556.
  5. Cleveland D.W., Mao Y., Sullivan K.F. 2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell. V. 112. P. 407.
  6. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. V. 339. P. 819.
  7. Cox D.B.T., Platt R.D., Zhang F. 2015. Therapeutic genome editing: prospects and challenges. Nat. Ved. V. 21. P. 121.
  8. Crasta K., Ganem N.J., Dagher R., Lantermann A.B., Ivanova E.V., PanY., Nezi L., Protopopov A., Chowdhury D., Pellman D. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature. V. 482. P. 53.
  9. Fujii W., Kawasaki K., Sugiura K., Naito K. 2013. Efficient generation of large-scale genome-modified mice using gRNA and Cas9 endonuclease. Nucleic Acids Res. V. 41: e187.
  10. Goepfert T.M., McCarthy M., Kittrell F.S., Stephens C., Ullrich R.L., Brinkley B.R., Medina D. 2000. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells. FASEB J. V. 14. P. 2221.
  11. Hara S., Kato T., Goto Y., Kubota S., Tamano M., Terao M., Takada S. 2016. Microinjection-based generation of mutant mice with a double mutation and a 0.5 Mb deletion in their genome by the CRISPR/Cas9 system. J Reprod Dev. V. 62. P. 531.
  12. Hsu P.D., Lander E.S., Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell. V. 157. P. 1262.
  13. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. V. 31. P. 827.
  14. Hussain W., Mahmoodb T., Hussain J., Alid N., Shahe T., Qayyumf S., Khang I. 2019. CRISPR/Cas system: A game changing genome editing technology, to treat human genetic diseases. Gene. V. 685. P. 70.
  15. Janssen A., van der Burg M., Szuhai K., Kops G.J., Medema R.H. 2011. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science. V. 333. P. 1895.
  16. Kalitsis P., Fowler K.J., Griffiths B., Earle E., Chow C.W., Jamsen K., Choo K.H.A. 2005. Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer. V. 44. P. 29.
  17. Korablev A.N., Serova I.A., Serov O.L. 2017. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology. BMC Genet. V. 18. P. 112.
  18. Kosicki M., Tomberg K., Bradley R. 2018. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. V. 36. P. 765.
  19. Kraft K., Geuer S., Will A.J., Chan W.L., Paliou C., Borschiwer M., Harabula I., Wittler L., Franke M., Ibrahim D.M., Kragesteen B.K., Spielmann M., Mundlos S., Lupianez D.G., Andrey G. 2015. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. V. 10. P. 833.
  20. Lin S.R., Yang H.C., Kuo Yi.T., Sung K.C., Lin Y.Y., Wang H.Y., Wang C.C., Shen Y.C., Wu F.Y., Kao J.H., Chen D.S., Chen P.J. 2014. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids. V. 3: e186.
  21. Liu X., Wu H., Loring J., Hormuzdi S., Disteche C.M., Bornstein P., Jaenisch R. 1997. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. V. 209. P. 85.
  22. Mehravar M., Shirazi A., Nazari M., Banan M. 2019. Mosaicism in CRISPR/Cas9-mediated genome editing. Develop. Biology. V. 445. P. 156.
  23. Menzorov A., Pristyazhnyuk I., Kizilova H., Yunusova A., Battulin N., Zhelezova A., Golubitsa A., Serov O.L. 2016. Cytogenetic analysis and Dlk1-Dio3 locus epigenetic status of mouse embryonic stem cells during early passages. Cytotechnology. V. 68. P. 61.
  24. Minina Yu.M., Zhdanova N.S., Shilov A.G., Tolkunova E.N., Liskovykh M.A., Tomilin A.N. 2010. Chromosomal instability of mouse pluripotent cells cultured in vitro. Cell and Tissue Biology. V. 4. P. 223.
  25. Mollanoori H., Shahraki H., Rahmati Y., Teimourian S. 2018. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Human Immunology. V. 79. P. 876.
  26. Pankowicz F.P., Barzi M., Legras X., Hubert L., Mi T., Tomolonis J.A., Ravishankar M., Sun Q., Yang D., Borowiak M., Sumazin P., Elsea S.H., Bissig-Choisat B., Bissig K.D. 2016. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat. Commun. V. 7. P. 1.
  27. Podryadchikova O.L., Pristyazhnyuk I.E., Matveeva N.M., Serov O.L. 2009. FISH analysis of regional replication of homologous chromosomes in hybrid cells obtained by fusion of embryonic stem cells with somatic cells. Tsitologiya. V. 51. P. 500.
  28. Pristyazhnyuk I.E., Minina J., Korablev A., Serova I., Fishman V., Gridina M., Rozhdestvensky T.S., Gubar L., Skryabin B.V., Serov O.L. 2019. Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice. Sci. Rep. V. 9. P. 14 161.
  29. Sakuma T., Masaki K., Abe-Chayama H., Mochida K., Yamamoto T., Chayama K. 2016. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells. V. 21. P. 1253.
  30. Santaguida S., Richardson A., Iyer D.R., M’Saad O., Zasadil L., Knouse K.A., Wong Y.L., Rhind N., Desai A., Amon A. 2017. Chromosome mis-segregation generates cell cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev Cell. V. 41. P. 638.
  31. Singla S., Iwamoto-Stohl L.K., Zhu M., Zernicka-Goetz M. 2020. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun. V. 11. P. 2958.
  32. Telenius H., Pelmear A.H., Tunnacliffe A., Carter N.P., Behmel A., Ferguson-Smith M.A., Nordenskjold M., Pfragner R., Ponder B.A. 1992. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer. V. 4. P. 226.
  33. Thompson S.L., Compton D.A. 2011. Chromosomes and cancer cells. Chromosome Res. V. 19. P. 433.
  34. Vetchinova A.S., Simonova V.V., Novosadova E.V., Manuilova E.S., Nenasheva V.V., Tarantul V.Z., Grivennikov I.A., Khaspekov L.G., Illarioshkin S.N. 2018. Cytogenetic analysis of the results of genome editing on the cell model of Parkinson’s disease. Bull. Exp. Biol. Med. V. 165. P. 355.
  35. Yang E., O’Brien P.C.M., Ferguson-Smith M.A. 2000. Comparative chromosome map of the laboratory mouse and chinese hamster defined by reciprocal chromosome painting. Chromosome Res. V. 8. P. 219.
  36. Zhang L., Jia R., Palange N.J., Satheka A.C., Togo J., An Y., Humphrey M., Ban L., Ji Y., Jin H., Feng X., Zheng Y. 2015. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. V. 10: e0120396.
  37. Zhen S., Lu J.J., Wang L.J., Sun X.M., Zhang J.Q., Li X., Luo W.J., Zhao L. 2016. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Transl. Oncology. V. 9. P. 498.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (389KB)

Copyright (c) 2023 Ю.М. Минина, А.Б. Сорока, Т.В. Карамышева, Н.А. Сердюкова, О.Л. Серов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies