New in Centromere Genomics: Lessons from the First T2T Human Genome Assembly

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

With the recent development of long-read sequencing technologies, it is now possible for the first time to read a complete gapless sequence of the human genome. The result was the first T2T (telomere-to-telomere) genomic assembly, published by an international consortium of scientists in 2022. The most significant contribution of the new assembly were the centromeric regions consisting of highly repetitive satellite DNA. In this review, we will briefly list the major achievements of the T2T consortium related to centromeres and take a closer look at the unexpected findings of cytogenetic magnitude that analysis of first assembled human centromeres has brought, such as the “split” centromeres of chromosomes 3 and 4, mega-inversion in the active centromere array of chromosome 1, haplotypic epialleles in the centromere of X chromosome and the macro-repeats found in several centromeres.

About the authors

L. I. Uralsky

Sirius University of Science and Technology; Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: uralskiy.li@talantiuspeh.ru
Russia, 354340, Sirius; Russia, 119991, Moscow

I. A. Alexandrov

Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Bioinformatics and Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University; Research Center of Biotechnology of the Russian Academy of Sciences

Email: uralskiy.li@talantiuspeh.ru
Russia, 119991, Moscow; Russia, 199034, Saint Petersburg; Russia, 119071, Moscow

F. D. Ryabov

National Research University, Higher School of Economics

Email: uralskiy.li@talantiuspeh.ru
Russia, 109028, Moscow

A. L. Lapidus

Center for Bioinformatics and Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University

Email: uralskiy.li@talantiuspeh.ru
Russia, 199034, Saint Petersburg

E. I. Rogaev

Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences; UMass Chan Medical School, Department of Psychiatry

Email: uralskiy.li@talantiuspeh.ru
Russia, 119991, Moscow; USA, 01655, MA, Shrewsbury

References

  1. Alexandrov I., Kazakov A., Tumeneva I., Shepelev V., Yurov Y. 2001. Alpha-satellite DNA of primates: old and new families. Chromosoma. V. 110. P. 253. https://doi.org/10.1007/s004120100146
  2. Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., Sauria M.E.G., Borchers M., Gershman A., Mikheenko A., Shepelev V.A. et al. 2022a. Complete genomic and epigenetic maps of human centromeres. Science. V. 376. NO. 6588. https://doi.org/10.1126/science.abl4178
  3. Altemose N., Maslan A., Smith O.K., Sundararajan K., Brown R.R., Mishra R., Detweiler A.M., Neff N., Miga K.H., Straight A.F., Streets A. 2022b. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat Methods. V. 19. P. 711. https://doi.org/10.1038/s41592-022-01475-6
  4. Beecham G.W., Hamilton K., Naj A.C., Martin E.R., Huentelman M., Myers A.J., Corneveaux J.J., Hardy J., Vonsattel J.-P., Younkin S.G., Bennett D.A., De Jager P.L., Larson E.B., Crane P.K., Kamboh M.I. et al. 2014. Genome-wide association Meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. V. 10, e1004606. https://doi.org/10.1371/journal.pgen.1004606
  5. Berglund A., Stochholm K., Gravholt C.H. 2020. The epidemiology of sex chromosome abnormalities. Am. J. Med. Genet. V. 184. P. 202. https://doi.org/10.1002/ajmg.c.31805
  6. Bishop D.V.M., Jacobs P.A., Lachlan K., Wellesley D., Barnicoat A., Boyd P.A., Fryer A., Middlemiss P., Smithson S., Metcalfe K., Shears D., Leggett V., Nation K., Scerif G. 2011. Autism, language and communication in children with sex chromosome trisomies. Archives of Disease in Childhood. V. 96. P. 954. https://doi.org/10.1136/adc.2009.179747
  7. Bojesen A., Gravholt C.H. 2011. Morbidity and mortality in Klinefelter syndrome (47,XXY): Morbidity and mortality in KS. Acta Paediatrica. V. 100. P. 807. https://doi.org/10.1111/j.1651-2227.2011.02274.x
  8. Bzikadze A.V., Pevzner P.A. 2020. Automated assembly of centromeres from ultra-long error-prone reads. Nat. Biotechnol. V. 38. P. 1309. https://doi.org/10.1038/s41587-020-0582-4
  9. Carlson M., Brutlag D. 1977. Cloning and characterization of a complex satellite DNA from drosophila melanogaster. Cell. V. 11. P. 371. https://doi.org/10.1016/0092-8674(77)90054-X
  10. Cimini D., Howell B., Maddox P., Khodjakov A., Degrassi F., Salmon E.D. 2001. Merotelic Kinetochore Orientation Is a Major Mechanism of Aneuploidy in Mitotic Mammalian Tissue Cells. Journal of Cell Biology. V. 153. P. 517. https://doi.org/10.1083/jcb.153.3.517
  11. Dumont M., Gamba R., Gestraud P., Klaasen S., Worrall J.T., De Vries S.G., Boudreau V., Salinas-Luypaert C., Maddox P.S., Lens S.M., Kops G.J., McClelland S.E., Miga K.H., Fachinetti D. 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J. V. 39. https://doi.org/10.15252/embj.2019102924
  12. Durfy S.J., Willard H.F. 1989. Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: Evidence for short-range homogenization of tandemly repeated DNA sequences. Genomics. V. 5. P. 810. https://doi.org/10.1016/0888-7543(89)90123-7
  13. Earnshaw W., Bordwell B., Marino C., Rothfield N. 1986. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J. Clin. Invest. V. 77. P. 426. https://doi.org/10.1172/JCI112320
  14. Earnshaw W.C., Cooke C.A. 1989. Proteins of the inner and outer centromere of mitotic chromosomes. Genome. V. 31. P. 541. https://doi.org/10.1139/g89-103
  15. Earnshaw W.C., Rothfield N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma. V. 91. P. 313. https://doi.org/10.1007/BF00328227
  16. Fung H.-C., Scholz S., Matarin M., Simón-Sánchez J., Hernandez D., Britton A., Gibbs J.R., Langefeld C., Stiegert M.L., Schymick J., Okun M.S., Mandel R.J., Fernandez H.H., Foote K.D., Rodríguez R.L. et al. 2006. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. The Lancet Neurology. V. 5. P. 911. https://doi.org/10.1016/S1474-4422(06)70578-6
  17. Ge Y., Wagner M.J., Siciliano M., Wells D.E. 1992. Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. Genomics. V. 13. P. 585. https://doi.org/10.1016/0888-7543(92)90128-F
  18. Gershman A., Sauria M.E.G., Guitart X., Vollger M.R., Hook P.W., Hoyt S.J., Jain M., Shumate A., Razaghi R., Koren S., Altemose N., Caldas G.V., Logsdon G.A., Rhie A., Eichler E.E. et al. 2022. Epigenetic patterns in a complete human genome. Science. V. 376. NO. 6588. https://doi.org/10.1126/science.abj5089
  19. Ghareghani M., Porubskỳ D., Sanders A.D., Meiers S., Eichler E.E., Korbel J.O., Marschall T. 2018. Strand-seq enables reliable separation of long reads by chromosome via expectation maximization. Bioinformatics. V. 34. P. i115. https://doi.org/10.1093/bioinformatics/bty290
  20. Herold C., Hooli B.V., Mullin K., Liu T., Roehr J.T., Mattheisen M., Parrado A.R., Bertram L., Lange C., Tanzi R.E. 2016. Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3. Mol. Psychiatry. V. 21. P. 1608. https://doi.org/10.1038/mp.2015.218
  21. International Human Genome Sequencing Consortium. 2004. Finishing the euchromatic sequence of the human genome. Nature. V. 431. P. 931. https://doi.org/10.1038/nature03001
  22. International Human Genome Sequencing Consortium, Whitehead Institute for Biomedical Research, Center for Genome Research:, Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D. et al. 2001. Initial sequencing and analysis of the human genome. Nature. V. 409. P. 860. https://doi.org/10.1038/35057062
  23. Iourov I.Y., Vorsanova S.G., Yurov Y.B., Kutsev S.I. 2019. Ontogenetic and pathogenetic views on somatic chromosomal mosaicism. Genes. V. 10. P. 379. https://doi.org/10.3390/genes10050379
  24. Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., Malla S., Marriott H., Nieto T., O’Grady J., Olsen H.E. et al. 2018a. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. V. 36. P. 338. https://doi.org/10.1038/nbt.4060
  25. Jain M., Olsen H.E., Turner D.J., Stoddart D., Bulazel K.V., Paten B., Haussler D., Willard H.F., Akeson M., Miga K.H. 2018b. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. V. 36. P. 321. https://doi.org/10.1038/nbt.4109
  26. Jarvis E.D., Formenti G., Rhie A., Guarracino A., Yang C., Wood J., Tracey A., Thibaud-Nissen F., Vollger M.R., Porubsky D., Cheng H., Asri M., Logsdon G.A., Carnevali P., Chaisson M.J.P. et al. 2022. Semi-automated assembly of high-quality diploid human reference genomes. Nature. V. 611. P. 519. https://doi.org/10.1038/s41586-022-05325-5
  27. Kazakov A.E., Shepelev V.A., Tumeneva I.G., Alexandrov A.A., Yurov Y.B., Alexandrov I.A. 2003. Interspersed repeats are found predominantly in the “old” α satellite families. Genomics. V. 82. P. 619. https://doi.org/10.1016/S0888-7543(03)00182-4
  28. Langley S.A., Miga K.H., Karpen G.H., Langley C.H. 2019. Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife. V. 8. e42989. https://doi.org/10.7554/eLife.42989
  29. Lee I., Razaghi R., Gilpatrick T., Molnar M., Gershman A., Sadowski N., Sedlazeck F.J., Hansen K.D., Simpson J.T., Timp W. 2020. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods. V. 17. P. 1191. https://doi.org/10.1038/s41592-020-01000-7
  30. Levine M.S., Holland A.J. 2018. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. V. 32. P. 620. https://doi.org/10.1101/gad.314351.118
  31. Levy S., Sutton G., Ng P.C., Feuk L., Halpern A.L., Walenz B.P., Axelrod N., Huang J., Kirkness E.F., Denisov G., Lin Y., MacDonald J.R., Pang A.W.C., Shago M., Stockwell T.B. et al. 2007. The Diploid Genome Sequence of an Individual Human. PLoS Biol. V. 5. P. e254. https://doi.org/10.1371/journal.pbio.0050254
  32. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A. et al. 2009. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science. V. 326. P. 289. https://doi.org/10.1126/science.1181369
  33. Logsdon G.A., Vollger M.R., Hsieh P., Mao Y., Liskovykh M.A., Koren S., Nurk S., Mercuri L., Dishuck P.C., Rhie A., de Lima L.G., Dvorkina T., Porubsky D., Harvey W.T., Mikheenko A. et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature. V. 593. P. 101. https://doi.org/10.1038/s41586-021-03420-7
  34. Mahtani M.M., Willard H.F. 1998. Physical and Genetic Mapping of the Human X Chromosome Centromere: Repression of Recombination. Genome Res. V. 8. P. 100. https://doi.org/10.1101/gr.8.2.100
  35. Manuelidis L. 1976. Repeating restriction fragments of human DNA. Nucleic Acids Research. V. 3. P. 3063. https://doi.org/10.1093/nar/3.11.3063
  36. Manuelidis L., Wu J.C. 1978. Homology between human and simian repeated DNA. Nature. V. 276. P. 92. https://doi.org/10.1038/276092a0
  37. Miga K.H. 2019. Centromeric satellite DNAs: Hidden sequence variation in the human population. Genes. V. 10. P. 352. https://doi.org/10.3390/genes10050352
  38. Miga K.H., Alexandrov I.A. 2021. Variation and Evolution of Human Centromeres: A Field Guide and Perspective. Annu. Rev. Genet. V. 55. P. 583. https://doi.org/10.1146/annurev-genet-071719-020519
  39. Miga K.H., Eisenhart C., Kent W.J. 2015. Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments. Nucleic Acids Res. V. 43. P. e133. https://doi.org/10.1093/nar/gkv671
  40. Miga K.H., Koren S., Rhie A., Vollger M.R., Gershman A., Bzikadze A., Brooks S., Howe E., Porubsky D., Logsdon G.A., Schneider V.A., Potapova T., Wood J., Chow W., Armstrong J. et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature. V. 585. P. 79. https://doi.org/10.1038/s41586-020-2547-7
  41. Miga K.H., Newton Y., Jain M., Altemose N., Willard H.F., Kent W.J. 2014. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. V. 24. P. 697. https://doi.org/10.1101/gr.159624.113
  42. Miga K.H., Wang T. 2021. The Need for a Human Pangenome Reference Sequence. Annu. Rev. Genom. Hum. Genet. V. 22. P. 81. https://doi.org/10.1146/annurev-genom-120120-081921
  43. Mikheenko A., Bzikadze A.V., Gurevich A., Miga K.H., Pevzner P.A. 2020. TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics. V. 36. P. i75. https://doi.org/10.1093/bioinformatics/btaa440
  44. Nechemia-Arbely Y., Fachinetti D., Miga K.H., Sekulic N., Soni G.V., Kim D.H., Wong A.K., Lee A.Y., Nguyen K., Dekker C., Ren B., Black B.E., Cleveland D.W. 2017. Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. Journal of Cell Biology. V. 216. P. 607. https://doi.org/10.1083/jcb.201608083
  45. Nechemia-Arbely Y., Miga K.H., Shoshani O., Aslanian A., McMahon M.A., Lee A.Y., Fachinetti D., Yates J.R., Ren B., Cleveland D.W. 2019. DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nat. Cell Biol. V. 21. P. 743. https://doi.org/10.1038/s41556-019-0331-4
  46. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., Aganezov S., Hoyt S.J., Diekhans M., Logsdon G.A., Alonge M. et al. 2022. The complete sequence of a human genome. Science. V. 376. P. 44. https://doi.org/10.1126/science.abj6987
  47. Nurk S., Walenz B.P., Rhie A., Vollger M.R., Logsdon G.A., Grothe R., Miga K.H., Eichler E.E., Phillippy A.M., Koren S. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. V. 30. P. 1291. https://doi.org/10.1101/gr.263566.120
  48. Osoegawa K., Vessere G.M., Li Shu C., Hoskins R.A., Abad J.P., de Pablos B., Villasante A., de Jong P.J. 2007. BAC clones generated from sheared DNA. Genomics. V. 89. P. 291. https://doi.org/10.1016/j.ygeno.2006.10.002
  49. Palmer J.D., Nugent J.M., Herbon L.A. 1987. Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. U.S.A. V. 84. P. 769. https://doi.org/10.1073/pnas.84.3.769
  50. Rautiainen M., Nurk S., Walenz B.P., Logsdon G.A., Porubsky D., Rhie A., Eichler E.E., Phillippy A.M., Koren S. 2022. Verkko: telomere-to-telomere assembly of diploid chromosomes (preprint). Bioinformatics. https://doi.org/10.1101/2022.06.24.497523
  51. Rhie A., Nurk S., Cechova M., Hoyt S.J., Taylor D.J., Altemose N., Hook P.W., Koren S., Rautiainen M., Alexandrov I.A., Allen J., Asri M., Bzikadze A.V., Chen N.-C., Chin C.-S. et al. 2022. The complete sequence of a human Y chromosome (preprint). Genomics. https://doi.org/10.1101/2022.12.01.518724
  52. Rudd M.K., Willard H.F. 2004. Analysis of the centromeric regions of the human genome assembly. Trends in Genetics. V. 20. P. 529. https://doi.org/10.1016/j.tig.2004.08.008
  53. Rudd M.K., Wray G.A., Willard H.F. 2006. The evolutionary dynamics of α-satellite. Genome Res. V. 16. P. 88. https://doi.org/10.1101/gr.3810906
  54. Schueler M.G., Higgins A.W., Rudd M.K., Gustashaw K., Willard H.F. 2001. Genomic and Genetic Definition of a Functional Human Centromere. Science. V. 294. P. 109. https://doi.org/10.1126/science.1065042
  55. She X., Horvath J.E., Jiang Z., Liu G., Furey T.S., Christ L., Clark R., Graves T., Gulden C.L., Alkan C., Bailey J.A., Sahinalp C., Rocchi M., Haussler D., Wilson R.K. et al. 2004. The structure and evolution of centromeric transition regions within the human genome. Nature. V. 430. P. 857. https://doi.org/10.1038/nature02806
  56. Shepelev V.A., Alexandrov A.A., Yurov Y.B., Alexandrov I.A. 2009. The Evolutionary Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking the Active Centromeres of Human Chromosomes. PLoS Genet. V. 5, e1000641. https://doi.org/10.1371/journal.pgen.1000641
  57. Simpson J.T., Workman R.E., Zuzarte P.C., David M., Dursi L.J., Timp W. 2017. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. V. 14. P. 407. https://doi.org/10.1038/nmeth.4184
  58. Singer M.F. 1982. Highly Repeated Sequences in Mammalian Genomes. International Review of Cytology. V. 76. P. 67. https://doi.org/10.1016/S0074-7696(08)61789-1
  59. Skakkebæk A., Gravholt C.H., Rasmussen P.M., Bojesen A., Jensen J.S., Fedder J., Laurberg P., Hertz J.M., Østergaard J.R., Pedersen A.D., Wallentin M. 2014. Neuroanatomical correlates of Klinefelter syndrome studied in relation to the neuropsychological profile. NeuroImage: Clinical. V. 4. P. 1. https://doi.org/10.1016/j.nicl.2013.10.013
  60. Steinberg K.M., Schneider V.A., Graves-Lindsay T.A., Fulton R.S., Agarwala R., Huddleston J., Shiryev S.A., Morgulis A., Surti U., Warren W.C., Church D.M., Eichler E.E., Wilson R.K. 2014. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. V. 24. P. 2066. https://doi.org/10.1101/gr.180893.114
  61. Sullivan B.A., Wolff D.J., Schwartz S. 1994. Analysis of centromeric activity in Robertsonian translocations: implications for a functional acrocentric hierarchy. Chromosoma. V. 103. P. 459. https://doi.org/10.1007/BF00337384
  62. Suzuki Y., Myers E.W., Morishita S. 2020. Rapid and ongoing evolution of repetitive sequence structures in human centromeres. Sci. Adv. V. 6. eabd9230. https://doi.org/10.1126/sciadv.abd9230
  63. Tartaglia N.R., Howell S., Sutherland A., Wilson R., Wilson L. 2010. A review of trisomy X (47,XXX). Orphanet J. Rare Dis. V. 5. P. 8. https://doi.org/10.1186/1750-1172-5-8
  64. Thakur J., Henikoff S. 2018. Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev. V. 32. P. 20. https://doi.org/10.1101/gad.307736.117
  65. Uralsky L.I., Shepelev V.A., Alexandrov A.A., Yurov Y.B., Rogaev E.I., Alexandrov I.A. 2019. Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly. Data in Brief. V. 24. P. 103708. https://doi.org/10.1016/j.dib.2019.103708
  66. Vázquez-Diez C., FitzHarris G. 2018. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction. V. 155. P. R63. https://doi.org/10.1530/REP-17-0569
  67. Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R. et al. 2001. The sequence of the human genome. Science. V. 291. P. 1304. https://doi.org/10.1126/science.1058040
  68. Vorsanova S.G., Kolotii A.D., Kurinnaia O.S., Kravets V.S., Demidova I.A., Soloviev I.V., Yurov Y.B., Iourov I.Y. 2021. Turner’s syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol. Cytogenet. V. 14. P. 9. https://doi.org/10.1186/s13039-021-00529-2
  69. Vorsanova S.G., Demidova I.A., Kolotii A.D., Kurinnaia O.S., Kravets V.S., Soloviev I.V., Yurov Y.B., Iourov I.Y. 2022. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol. Cytogenet. V. 15. P. 8. https://doi.org/10.1186/s13039-022-00588-z
  70. Warburton P.E., Willard H.F. 1990. Genomic analysis of sequence variation in tandemly repeated DNA. Journal of Molecular Biology. V. 216. P. 3. https://doi.org/10.1016/S0022-2836(05)80056-7
  71. Warburton P.E., Willard H.F. 1995. Interhomologue sequence variation of alpha satellite DNA from human chromosome 17: Evidence for concerted evolution along haplotypic lineages. J. Mol. Evol. V. 41. https://doi.org/10.1007/BF00173182
  72. Wenger A.M., Peluso P., Rowell W.J., Chang P.-C., Hall R.J., Concepcion G.T., Ebler J., Fungtammasan A., Kolesnikov A., Olson N.D., Töpfer A., Alonge M., Mahmoud M., Qian Y., Chin C.-S. et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. V. 37. P. 1155. https://doi.org/10.1038/s41587-019-0217-9
  73. Wevrick R., Willard H.F. 1991. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucl. Acids Res. V. 19. P. 2295. https://doi.org/10.1093/nar/19.9.2295
  74. Wevrick R., Willard H.F. 1989. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. U.S.A. V. 86. P. 9394. https://doi.org/10.1073/pnas.86.23.9394
  75. Willard H.F. 1985. Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. Genet. V. 37. P. 524.
  76. Willard H.F., Waye J.S. 1987. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends in Genetics. V. 3. P. 192. https://doi.org/10.1016/0168-9525(87)90232-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (172KB)
3.

Download (522KB)
4.

Download (296KB)
5.

Download (786KB)
6.

Download (222KB)

Copyright (c) 2023 Л.И. Уральский, И.А. Александров, Ф.Д. Рябов, А.Л. Лапидус, Е.И. Рогаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies