Response of the Endometrial Mesenchymal Stem Cell Genome to the Procedure of Long-Term Cryopreservation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Information about the effect of cryopreservation on functions and the genetic of cells of different genesis is not unambiguous and is in the process of accumulation. This work is aimed at studying the effect of long-term storage (7 years) of human endometrial mesenchymal stem cells (eMSCs) in the frozen state on the stability of their genome in vitro. The results showed destabilization of the karyotype structure in the descendants of cells after their thawing, namely, aneupolyploidization, increased fragility of chromosomes, resulting in a huge pool of aberrant chromosomes, and impaired condensation in homologues. Chromosomal breakds in centromeric regions offen accompanied by the preservation of genetic material in the form of independent chromosomes. Almost all chromosomes of the set were involved in the process of destabilization of the eMSCs cell genome. It has been shown that the procedure of long-term cryopreservation can become an inducer of premature cellular aging of eMSCs after their thawing. Comparison of the data obtained with the results of karyotyping of transformed Chinese hamster cells that underwent a similar procedure led to the conclusion that cryopreservation for biological systems can be a stress that induces genetic defects of various types at the karyotype level. The response of the genome of cells of different origin to the same conditions of cryopreservation may differ.

About the authors

T. M. Grinchuk

Institute of Cytology, Russian Academy of Sciences

Email: shili-mariya@yandex.ru
Russia, 194064, St. Petersburg

M. A. Shorokhova

Institute of Cytology, Russian Academy of Sciences

Author for correspondence.
Email: shili-mariya@yandex.ru
Russia, 194064, St. Petersburg

N. A. Pugovkina

Institute of Cytology, Russian Academy of Sciences

Email: shili-mariya@yandex.ru
Russia, 194064, St. Petersburg

References

  1. Астрелина Т.А., Гомзяков А.Е., Кобзева И.В., Карпова Е.Э., Круглова Я.А., Скоробогатова Е.В., Балашов Д.Н., Князев О.В., Яковлева М.В. 2013. Оценка качества и безопасности применения криоконсервированных мультипотентных мезенхимальных стромальных клеток плаценты в клинической практике. Гены и клетки. № 4. С. 82 (Astrelina T.A., Gomzyakov A. E., Kobzeva I.V., Karpova E.E., Kruglova Ya.A., Skorobogatova E.V., Balashov D.N., Knyazev O.V., Yakovleva M.V. 2013. Evaluation of the quality and safety of cryopreserved multipotent placental mesenchymal stromal cells in clinical practice. Genes and Cells. № 4. P. 82.)
  2. Гринчук Т.М., Шилина М.А. 2021. Влияние криоконсервации на стабильность кариотипа трансформированных фибробластов легкого китайского хомячка in vitro. Цитология. Т. 63. № 1. С. 63. (Grinchuk T.M., Shilina M.A. 2021. Effect of cryopreservation on the stability of the karyotype of transformed Chinese hamster lung fibroblasts in vitro. Tsitologiya V. 63. № 1. P. 63.)
  3. Земелько В.И., Гринчук Т.М., Домнина А.П., Арцыбашева И.В., Зенин В.В., Кирсанов А.А., Бичевая Н.К., Корсак В.С., Никольский Н.Н. 2011. Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека. Цитология. Т. 53. № 12. С. 919. (Zemelko V.I., Grinchuk T.M., Domnina A.P., Artsybasheva I.V., Zenin V.V., Kirsanov A.A., Beachevaya N.K., Korsak V.S., Nikolskiy N.N. 2011. Multipotent mesenchymal stem cells of desquamated endometrium. Identification, characterization and use as a feeder layer for the cultivation of human embryonic stem lines. Tsitologiya. V. 53. № 12. P. 919.)
  4. Мамаева С.Е. 2002. Атлас хромосом – постоянные клеточные линии человека и животных. М.: Науч. мир. 231 с. (Mamaeva S.E. 2002. Atlas chromosomes permanent cell lines of human and animals. M.: Nauchniy mir. 231 p.)
  5. Одинцова И.А., Русакова С.Э., Шмидт А.А., Тимошкова Ю.Л. 2021.Криоконсервация половых клеток: история и современное состояние вопроса. Гены и клетки. № 3. С. 44 (Odintsova I.A., Rusakova S.E., Schmidt A.A., Timoshkova Yu.L. 2021. Cryopreservation of germ cells: history and current state of the issue. Genes and cells. № 3. P. 44.)
  6. Полянская Г.Г., Семенова Е.Г., Шубин Н.А. 1990. Влияние криоконсервации на цитогенетические характеристики клеточной сублинии фибробластов кожи индийского мунджука. Цитология. Т. 32. № 3. С. 256. (Polyanskaya G.G., Semenova E.G., Shubin N.A. 1990. Cytological variations in the Indian muntjac skin fibroblast cell line as a result of cryoconservation. Tsytologya. V. 32. № 3. P. 256.)
  7. Семенова Е.Г. 1988. Внеплановый синтез ДНК в культивируемых клетках после криоконсервации. Криобиология. № 1. С. 17. (Semenova E.G. 1988. Unscheduled DNA synthesis in cultured cells after cryoconservation. Cryobiology. № 1. P. 17.)
  8. Шорохова М.А., Гринчук Т.М. 2021. Стабильность кариотипа мезенхимных стволовых клеток эндометрия человека in vitro. Цитология. Т. 63. № 5. С. 491. (Shorokhova M.A., Grinchuk T.M. Stability of the human endometrial mesenchymal stem cells karyotype in vitro. Tsitologiya. V. 63. № 5. P. 491.)
  9. Antebi B., Asher A.M., Rodriguez L.A. 2nd, Moore R.K., Mohammadipoor A., Cancio L.C. 2019. Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J. Transl. Med. V. 17. P. 297. https://doi.org/10.1186/s12967-019-2038-5
  10. Bahsoun S., Coopman K., Akam E.C. 2019. The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review. J. Transl. Med. V. 17. P. 397. https://doi.org/10.1186/s12967-019-02136-7
  11. de-Lima Prata K., de Santis G.C., Orellana M.D., Palma P.V., Brassesco M.S., Covas D.T. 2012. Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy. V. 14. P. 694.
  12. Diaferia G.R., Dessi S.S., Deblasio P., Biunno I. 2008. Is stem cell chromosomes stability affected by cryopreservation conditions? Cytotechnology. V. 58. P. 11.
  13. Duarte D.M., Cornélio D.A., Corado C., Medeiros V.K., de Araujo L.A., Cavalvanti G.B.J., de Medeiros S.R. 2012. Chromosomal characterization of cryopreserved mesenchymal stem cells from the human subendothelium umbilical cord vein. Regen. Med. V. 7. P. 147.
  14. Heng B.C., Kuleshova L.L., Bested S.M., Liu H., Cao T. 2005. The cryopreservation of human embryonic stem cells. Biotechnol. Appl. Biochem. V. 41. P. 97.
  15. Heng H.H., Liu G., Stevens J.B., Abdallah B.Y., Horne S.D., Ye K.J., Bremer S.W., Chowdhury S.K., Ye C.J. 2013. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet. Genome Res. V. 139. P. 144.
  16. Hiyama E., Hiyama K. 2007. Telomere and telomerase. Br. J. Cancer. V. 96. P. 1020.
  17. Imaizumi K., Nishishita N., Muramatsu M., Yamamoto T., Takenaka C., Kawamata S., Kobayashi K., Nishikawa S., Akuta T. 2014. A simple and highly effective method for slow-freezing human pluripotent stem cells using dimethyl sulfoxide, hydroxyethyl starch and ethylene glycol. PLoS One. V. 9. P. e88696. https://doi.org/10.1371/journal.pone.0088696
  18. Matidi M., Bhonde R. 2011. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. V. 86. P. 651.
  19. McGranahan N., Burrell R.A., Endesfelder D., Novelli M.R., Swanton C. 2012. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. V. 13. P. 528.
  20. Passerini V., Ozeri-Galai E., de Pagter M.S., Donnelly N., Schmalbrock S., Kloosterman W.P., Kerem B., Storchová Z. 2016. The presence of extra chromosomes leads to genomic instability. Nat. Commun. V. 7. P. 10754. https://doi.org/10.1038/ncomms10754
  21. Pera M.F., Reubinoff B., Trounson A. 2000. Human embryonic stem cells. J. Cell Sci. V. 113. P. 5.
  22. Polchow B., Kebbel K., Schmiedeknecht G., Reichardt A., Henrich W., Hetzer R., Lueders C. 2012. Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for future cell banks. J. Transl. Med. V. 10. P. 98.
  23. Rangel N., Forero-Castro M., Rondón-Lagos M. 2017. New insights in the cytogenetic practice: Karyotypic chaos, nonclonal chromosomal alterations and chromosomal instability in human cancer and therapy response. Genes (Basel). V. 8. P. 155.
  24. Ray M., Mohandas T. 1975. Proposed banding nomenclature for the Chinese hamster chromosomes (Cricetulus gruseus). Cytogenet. Cell Genet. V. 16. P. 83.
  25. Reubinoff B.E., Pera M.F., Fong C.Y., Trounson A., Bongso A. 2000. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. V. 18. P. 399.
  26. Tan Z., Chan Y.J.A., Chua Y.J.K., Rutledge S.D., Pavelka N., Cimini D., Rancati G. 2019. Environmental stresses induce karyotypic instability in colorectal cancer cells. Mol. Biol. Cell. V. 30. P. 42.
  27. Tang D.Q., Wang Q., Burkhardt B.R., Litherland S.A., Atkinson M.A., Yang L.J. 2012. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am. J. Stem Cells. V. 1. P. 114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (407KB)
3.

Download (143KB)
4.

Download (493KB)
5.

Download (1MB)

Copyright (c) 2023 Т.М. Гринчук, М.А. Шорохова, Н.А. Пуговкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies