Experience in Use of Remote Access and Predictive Analytics for Power Equipment’s Condition


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Digital technologies, software of predictive analytics, and advanced equipment will make it possible to improve economy, reliability, and safety of electricity generation. The industrial Internet begins with the introduction of systems based on mutual penetration of information technologies and automation devices of manufacturing equipment, such as the systems of remote monitoring and diagnostics. One of the inspection methods of the equipment’s condition is its continuous monitoring, which is a necessary condition for the transition to a service system on the operating condition. Using traditional modeling methods, it is possible to obtain only approximate data about the behavior of industrial systems and objects even in the cases when all factors influencing their work and operating condition are known, owing to the necessity to solve complex mathematical problems to carry out this modeling. For this reason, to monitor the operating condition of industrial systems, the statistical modeling of such systems based on empirical regulations defined by the samples of values of technological parameters recorded in the object operation period, which is considered by reference, found application in recent decades. The statistical methods of monitoring makes it possible to detect the changes in the operating condition of the system at early stages as well as to reveal the most important factors influencing them. The work presents a review of Russian systems of predictive analytics and mathematical methods on which they are based and also the PRANA system of prediction and remote monitoring that is implemented at the gas-turbine plant of V 94.2 Siemens type installed in the Perm TPP-9 (thermal power plant), the Vladimir TPP-2, the Izhevsk TPP-1, and the Kirov TPP-3, which are branches of PAO T Plyus. The efficiency of PRANA to detect the negative change of operating conditions before actual fault events was shown, which makes it possible to determine the residual life of a product and its components, schedule the optimal terms, the duration of equipment stop and preparation for its repair, and evaluate the quality of fulfilled repairs. The condition of the industrial Internet in Russian power engineering and the problems delaying its development are considered.

Об авторах

S. Naumov

AO ROTEC

Автор, ответственный за переписку.
Email: s.naumov@zaorotec.ru
Россия, Moscow, 119049

A. Krymskii

AO ROTEC

Email: s.naumov@zaorotec.ru
Россия, Moscow, 119049

M. Lipatov

AO ROTEC

Email: s.naumov@zaorotec.ru
Россия, Moscow, 119049

D. Skrabatun

AO ROTEC

Email: s.naumov@zaorotec.ru
Россия, Moscow, 119049

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».