Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 65, No 1 (2018)

Water Treatment and Water-Chemistry

Water-Chemistry and Its Utility Systems in CCP Power Units (Review)

Larin B.M.

Abstract

Damageability of heat transfer surfaces of waste heat recovery steam generators (HRSG) of combined- cycle plants (CCP) can be reduced due to an increase in the quality of make-up and feed water, the use of phosphate-alkaline or amino compound water chemistry (WC), and improved chemical quality control of the heat carrier and make-up water preparation techniques. Temporary quality standards for the heat medium developed by the All-Russia Thermal Engineering institute (VTI) for CCP power units are presented in comparison with the IAPWS standards; preferences for the choice of a WC type for some power units commissioned in Russia in the first decade of this century are shown; and operational data on the quality of feed, boiler water, and steam for two large CCP-450 and CCP-425 power units are given. The state and prospects for the development of chemical-technological monitoring systems and CCP water treatment plants are noted. Estimability of some CCP diagnostic parameters by measuring specific electric conductivity and pH is shown. An extensive bibliography on this topic is given.

Thermal Engineering. 2018;65(1):39-44
pages 39-44 views

Steam Turbine, Gas Turbine, Steam-Gas Plants and Accessory Equipment

Development of High-Powered Steam Turbines by OAO NPO Central Research and Design Institute for Boilers and Turbines

Mikhailov V.E., Khomenok L.A., Kovalev I.A.

Abstract

The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder’s flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting–cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal’s working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture–steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric parameters is described.

Thermal Engineering. 2018;65(1):1-10
pages 1-10 views

Influence of the Operational Wear of the Stator Parts of Shroud Seals on the Economic Efficiency of the Steam Turbines

Kostyuk A.G., Dmitriev S.S., Petrunin B.N., Gusev A.A.

Abstract

During the operation of steam turbines under transient conditions, due to different thermal expansion of the stator and rotor parts in the radial and axial directions, the clearances fixed in the course of assembling the seals of the flow path change, which causes rubbing in the seals and the wear of the latter. This inevitably increases the leakages through the seals. A particularly large difference in the relative axial and radial displacements of the rotor and stator parts is observed during the turbine start-ups when the difference in their temperature expansion is maximal. Upon the turbine stops, the turbine shafting runs down freely, as a rule, passing through all critical speeds at which the amplitude of the shafting oscillations reach their peak values, which also leads to seizures in the seals and their wear and tear. The seizures in the seals may also be a consequence of the eccentricity between the rotor and stator caused by the thermal strain of the stator, incorrect choice of the clearances, floating-up of the rotor in the bearing, and many other factors. Recently, standard shroud labyrinth seals are being replaced in the steam turbines by seals with honeycomb stator inserts, the design of which allows the ridges to cut into the honeycomb surface without damaging the former, which allows fixing a radial clearance in the seals of 0.5 mm. On the honeycomb surface where the ridges touch it, grooves are cut through. The wear of the shroud seals reduces the efficiency of the steam turbines during the operation to the greatest degree. However, by the present there have been no exact quantitative data available on the change in the leakage through the worn-out honeycomb seals. The paper presents the results of comparative experimental studies on the flow and power characteristics of seal models with smooth and honeycomb stator parts for various degrees of their wear. The studies showed that the leakages through the worn-out stator parts of the honeycomb seals increase approximately 1.7 times slower than under the similar wear of the ridges of conventional straight-through seals with smooth stator parts. However, this gain in efficiency achieved by replacing the standard smooth-wall seals with the honeycomb seals must be necessarily correlated with the measurement data on the nonconservative shroud forces in conventional axial-radial seals with smooth stator surfaces with a radial clearance of 4 mm, which is almost seven times lower than that in the honeycomb seals with a radial clearance of 0.5 mm. From the results obtained in the work, it follows that the installation of honeycomb shroud seals instead of traditional ridge seals in the high-pressure cylinders (HPCs) of the steam turbines for subcritical steam parameters with high-vibration-resistance rotors that have a sufficient margin of resistance to self-oscillations is undoubtedly advisable from the point of view of increasing the economic efficiency of the turbines. However, the use of honeycomb shroud seals with reduced radial clearances in the HPC parts of the steam turbines for supercritical steam parameters requires special cautiousness, since it is in the area of small clearances that the maximum nonconservative shroud forces capable of causing auto-oscillations of the shafting are observed and these forces are maximal precisely at high pressures.

Thermal Engineering. 2018;65(1):11-16
pages 11-16 views

Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

Taradai D.V., Deomidova Y.A., Zile A.Z., Tomashevskii S.B.

Abstract

The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system’s static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors influencing the crack formation processes in low-pressure rotors. The importance of experimentally confirming the fact that the shaft system has been detuned from resonances at the 50 and 100 Hz excitation frequencies is pointed out.

Thermal Engineering. 2018;65(1):17-26
pages 17-26 views

Experimental Study of the Effect the Basic Geometrical Parameter and the Active Gas Nozzle Expansion Ratio Have on the Performance Characteristics of Supersonic Gas Ejectors Fitted with a Conical Mixing Chamber

Tsegel’skii V.G., Akimov M.V., Safargaliev T.D.

Abstract

The article presents the results from experimental investigations of supersonic gas ejectors equipped with a conical mixing chamber having different lengths carried out for a number of values of the basic geometrical parameter and the active gas nozzle expansion ratio. Certain results obtained from a thermodynamic analysis of the ejectors have been confirmed in a wide range of geometrical parameters, specifically, that there is a possibility to obtain—at the same ejection factor—the first and second critical modes, which differ from each other in the motion pattern of mixing flows and in the efficiency of mixing processes occurring at different passive gas pressures; that there exist three zones in the throttle performance, which correspond to two critical modes and one subcritical mode (it is worthy of noting that the transition from the first critical mode to the subcritical mode that occurs during a growth of back pressure is accompanied by a step-like increase of passive gas pressure, whereas the transition from the subcritical mode to the second critical mode and vice versa occurs without a break in the continuity of changing the ejector’s throttle performance parameters); and that there may be two varieties of the second critical mode: with supersonic and sonic gas mixture flow velocities in the conical chamber outlet section. It is shown that the basic geometrical parameter and the active gas nozzle expansion ratio strongly influence the ejector’s operating and throttling performance characteristics, as well as the mixing chamber optimal length. Experimental dependences of the supersonic gas ejector’s adiabatic efficiency on the conical mixing chamber length are obtained at different values of the basic geometrical parameter and the active gas nozzle expansion factor for the first and second critical modes. It is shown that the optimal mixing chamber length depends on the ejector operating mode. Recommendations for selecting the optimal length of the supersonic gas ejector’s conical mixing chamber within the studied range of parameters for the first and second critical modes are given.

Thermal Engineering. 2018;65(1):27-38
pages 27-38 views

Nuclear Power Stations

Investigation into Behavior of a Steam-Water Mixture Flow Through Holes in a Submerged Perforated Sheet at High Void Fractions

Melikhov O.I., Nerovnov A.A., Nikonov S.M., Melikhov V.I.

Abstract

Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets’ impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k–ε model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.

Thermal Engineering. 2018;65(1):45-50
pages 45-50 views

Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

Pavliuk A.O., Zagumennov V.S., Kotlyarevskiy S.G., Bespala E.V.

Abstract

The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

Thermal Engineering. 2018;65(1):51-56
pages 51-56 views

Heat and Mass Transfer, Properties of Working Fluids and Materials

Effect of Channel Geometry and Properties of a Vapor–Gas Mixture on Volume Condensation in a Flow through a Nozzle

Sidorov A.A., Yastrebov A.K.

Abstract

A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor–gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor–gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

Thermal Engineering. 2018;65(1):57-64
pages 57-64 views

Metals and Strength Analysis

Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

Grin’ E.A., Pchelintsev A.V.

Abstract

During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates “deformation related to the deformation of fracture, current time related to time to failure.” For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to obtain quantitative indicators on the accumulation of microdamage in high-chromium steel in a conjunction with the development of a metal resource under creep conditions.

Thermal Engineering. 2018;65(1):65-71
pages 65-71 views

Energy Conservation, New and Renewable Energy Sources

Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

Vasil’ev G.P., Gornov V.F., Dmitriev A.N., Kolesova M.V., Yurchenko V.A.

Abstract

The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a “Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow” is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5–6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

Thermal Engineering. 2018;65(1):72-78
pages 72-78 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies