Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 63, No 11 (2016)

Steam-Turbine, Gas-Turbine, and Combined-Cycle Plants and Their Auxiliary Equipment

Cogeneration turbine unit with a new T-295/335-23.5 steam turbine

Valamin A.E., Kultyshev A.Y., Shibaev T.L., Gol’dberg A.A., Sakhnin Y.A., Stepanov M.Y., Shekhter M.V., Bilan V.N., Polyaeva E.N.

Abstract

The design, schematics, and arrangement of a T-295/335-23.5 turbine and the basic features of a steam-turbine unit (STU) intended for replacement of STUs with a T-250/300-23.5 turbine with the expired service life and installed in large cities, such as Moscow, St. Petersburg, Kiev, Minsk, and Kharkov, for heat and power generation are considered. The basic solutions for an automatic electrohydraulic control and protection system using high-pressure (HP) technology are described. As the turbine operates in a power unit together with a supercritical boiler and the design turbine service life of 250000 hours must be attained, turbine component construction materials complying with these requirements are listed.

Thermal Engineering. 2016;63(11):755-764
pages 755-764 views

Substantiation of the cogeneration turbine unit selection for reconstruction of power units with a T-250/300-23.5 turbine

Valamin A.E., Kultyshev A.Y., Shibaev T.L., Gol’dberg A.A., Sakhnin Y.A., Stepanov M.Y., Bilan V.N., Kadkina I.V.

Abstract

The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer’s requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1. The information is also presented on the use of the existing foundations, the fact that the overall dimensions of the turbine unit compartment are not changed, the selection of the new turbine type, and the solutions adopted on the basis of this information as to LPC blading, steam admission type, issues associated with thermal displacements, etc.

Thermal Engineering. 2016;63(11):765-770
pages 765-770 views

K-65-12.8 condensing steam turbine

Valamin A.E., Kultyshev A.Y., Gol’dberg A.A., Sakhnin Y.A., Bilan V.N., Stepanov M.Y., Polyaeva E.N., Shekhter M.V., Shibaev T.L.

Abstract

A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50–70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38–75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

Thermal Engineering. 2016;63(11):771-776
pages 771-776 views

Heat flow diagrams with and without a deaerator for steam turbine plants with T-250/300-23.5 turbines

Valamin A.E., Kultyshev A.Y., Shibaev T.L., Gol’dberg A.A., Stepanov M.Y.

Abstract

A T-250/300-240 turbine (currently known as T-250/300-23.5), which is operated at 31 steam turbine plants, is the largest in the world extraction turbine (by the heating extraction load) and one of the largest by the nominal capacity. All steam turbine plants equipped with T-250/300-23.5 turbines of different modifications are operated in large cities of Russia and the neighboring countries covering a significant part of the needs of cities for the electric power and almost fully supplying them with heat power. The design life of a significant part of the operated steam turbine plants of this family is either expired or almost expired. It refers to both the turbine unit (including a turbine and a generator) and the turbine plant equipment. For steam turbine plants equipped with T-250/300-23.5 turbines, which were initially designed and mounted for work with deaerators at electric power stations, the heat flow diagrams with and without a deaerator were compared. The main advantages and disadvantages of each scheme were shown. It was concluded that, for the newly constructed power units with supercritical steam parameters, it is preferable to use the heat flow diagram without a deaerator; for the upgraded blocks, if there are no objective reasons for the removal of a deaerator, it is recommended to keep the existing heat flow diagram of a turbine plant.

Thermal Engineering. 2016;63(11):777-780
pages 777-780 views

Analysis of thermal stresses in horizontal delivery water heaters

Bilan A.V., Plotnikov P.N.

Abstract

Analysis of thermal stresses in tubes and a compensator, taking into account water heating in each heater bunch and temperature at which its mounting is implemented, and of stresses on pressure is presented. The 3D-model of the horizontal delivery water heater of PSG-4900-0.3-1.14 type is used. The tube plate is represented as the 3D-body with 6863 holes with offset center of the perforated area, the steam space shell is represented as a cylindrical casing, the bottoms of water chambers are considered as elliptical casings, the four-lens compensator is represented in the form of toroidal casings, and the tubes are considered as beams operating in tensile-compression and bending in two planes. Calculations were carried out for different temperatures of superheated steam and a steam space shell, respectively, as well as designs with compensator and without it. Various temperature values of the tubes on the passes were calculated and set. The studies were carried out taking into account nonaxis-symmetrical spacing the tube plate and compensator deformation. The calculation results of tensile-compression stresses in the tubes are presented. Furthermore, the central tubes experience compressive stresses, whose maximal values take place on the border between the tubes of the fourth and of the first passes. For its decrease, it is recommended to increase the distance between the tubes of these passes. The tension stresses in the peripheral tubes are the maximal stresses. To reduce the stresses and, therefore, increase service life of the delivery water heater at using wet or superheated (not more than by 30–50°C) steam in it (the larger value refers to the brass tubes and the water pressure of 1.6–2.5 MPa), it is necessary to recommend the noncompensatory design at using the steam superheated by more than 30–50°C (at Ural Turbine Works, it is the turbines of T-250/300-23.5 and T-113/145-12.4 types with intermediate superheating) and to recommend the installation of the compensator operating only at compression.

Thermal Engineering. 2016;63(11):781-786
pages 781-786 views

Comparison of thermal testing of MS9001FA type GTPs at shatura and nizhnevartovsk GRES

Ol’khovskii G.G.

Abstract

Domestic power plants use combined-cycle plants in which a gas-turbine plant (GTP) and a steam turbine rotate a common electric generator. In this instance, it is impossible to measure the power of each of them, so we have to resort to some assumptions. We have succeeded to check the validity of these assumptions and possible errors of their application testing combined-cycle plants (CCP) with the same GTP and a steam turbine but operating each on its own electrical generator. Comparative tests of a MS901FA GTP of the PGU-400 power-generating unit commissioned at Shatura GRES (a thermal power station) and a GTP of the same type installed at Nizhnevartovsk GRES were performed. As a result of these tests, dependences of the electric power of both gas-turbine plants and a turbine outlet temperature on the inlet temperature were obtained. A relation of the GTP efficiency, heat and air rate on the load are determined, and characteristics of compressors and turbines of both GTPs are defined. The performed tests have confirmed the accuracy of the determined characteristics of the two GTPs using both a direct measurement of net power (Nizhnevartovsk GRES) and an indirect measurement (Shatura GRES).

Thermal Engineering. 2016;63(11):787-790
pages 787-790 views

Steam Boilers, Energetic Fuel, Furnace Facilities, and Auxiliary Equipment of Boilers

Development of entrained-flow gasification technologies in the Asia-Pacific region (review)

Ryzhkov A.F., Bogatova T.F., Lingyan Z., Osipov P.V.

Abstract

The gasifier that provides solid fuel conversion to produce syngas with relevant parameters is the key element of plants generating electric and thermal power, producing chemicals from coal. The purpose of this article is to analyze the modern trends in the development of gasification technologies and determine technical solutions providing the high efficiency of gasifiers and the characteristics of generated syngas that meet the requirements established by the process user. Based on the analysis of the world gasification technologies database, which includes all types of gasifiers in use and gasifiers at the construction or design stage, the data on the development of entrained-flow gasification technologies in the Asia-Pacific (AP) countries are discussed. The major constructional components of gasification plants, fuel-feed and syngas cooling methods and their influence on the efficiency and operational reliability are considered. The analysis of technological solutions confirmed the prospectivity of dry-feed entrained-flow technologies. The staged organization of the gasification process makes it possible to solve issues of increasing the economic and environmental indicators of gasification plant operation. The basic directions of modernization of entrained-flow gasifiers for improving their technical-and-economic perfomance was determined.

Thermal Engineering. 2016;63(11):791-801
pages 791-801 views

Numerical study of bituminous coal combustion in a boiler furnace with bottom blowing

Zroychikov N.A., Kaverin A.A.

Abstract

Results obtained by the numerical study of a solid fuel combustion scheme with bottom blowing using Ekibastuz and Kuznetsk bituminous coals of different fractional makeup are presented. Furnace chambers with bottom blowing provide high-efficiency combustion of coarse-grain coals with low emissions of nitrogen oxides. Studying such a combustion scheme, identification of its technological capabilities, and its further improvement are topical issues. As the initial object of study, we selected P-57-R boiler plant designed for burning of Ekibastuz bituminous coal in a prismatic furnace with dry-ash (solid slag) removal. The proposed modernization of the furnace involves a staged air inflow under the staggered arrangement of directflow burners (angled down) and bottom blowing. The calculation results revealed the specific aerodynamics of the flue gases, the trajectories of solid particles in the furnace chamber, and the peculiarities of the fuel combustion depending on the grinding fineness. It is shown that, for coal grinding on the mill, the overall residue on the screen plate of 90 µm (R90 ≤ 27% for Ekibastuz coal and R90 ≤ 15% for Kuznetsk coal) represents admissible values for fuel grind coarsening in terms of economic efficiency and functional reliability of a boiler. The increase in these values leads to the excess of regulatory heat losses and unburned combustible losses. It has been established that the change in the grade of the burned coal does not significantly affect the flow pattern of the flue gases, and the particles trajectory is essentially determined by the elemental composition of the fuel.

Thermal Engineering. 2016;63(11):802-812
pages 802-812 views

Combustion of bark and wood waste in the fluidized bed boiler

Pleshanov K.A., Ionkin I.L., Roslyakov P.V., Maslov R.S., Ragutkin A.V., Kondrat’eva O.E.

Abstract

In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950–1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140–190°C. Recommended hot air temperature is within the range of 200–250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8–2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

Thermal Engineering. 2016;63(11):813-818
pages 813-818 views

Nuclear Power Stations

Design of high-pressure direct contact heater for promising power supply units: Experimental substantiation

Somova E.V., Shvarts A.L., Turkin A.V.

Abstract

The results of experimental studies of superheated steam condensation on feed water jets in a highpressure, direct-contact heat exchanger are presented. Direct contact feed water heater (DCFWH) can be used in a dual-flow diagram of a steam-power unit with ultrasupercritical steam parameters (35 MPa, 700/720°C). The direct contact feed water heater is included in the flow diagram of the II circuit in a promising power unit; it provides feed water heating to 340°C in all maintenance and emergency operation modes of the unit. The reliability of the high-pressure direct contact heater operation in this flow diagram is of major importance in relation to the danger of lead solidification in the tube space of the steam generator. Technical requirements to the design of the high-pressure direct contact heater for increasing the heat exchange efficiency are formulated based on the results of earlier studies with steam–water mixture as the heating medium. The results of studies of superheated steam condensation on jets presented in this study testify that feed water is additionally heated to the required temperature at the output of the installation. The influence of initial feed water parameters (outflow velocity and temperature) on the jet heating length is elucidated. The numerical approximation of the experimental data for determination of the jet heating length in the nominal and partial power unit loads is obtained. The results of the calculations are used to simplify the design of the water-supplying element for the direct contact feed water heater. The proposed design of direct contact feed water heater is characterized by simplicity and low metal intensity, which provides the installation reliability at the considered pressure level due to the minimum number of structural elements.

Thermal Engineering. 2016;63(11):819-824
pages 819-824 views

International

Theoretical and experimental validation of evacuated tubes directly coupled with solar still

Panchal H.N., Thakkar H.

Abstract

Experimental study of evacuated tubes coupled solar still in the climatic conditions of Mehsana, a region of North Gujarat, India during summer and winter climate conditions has been made. Experimental setup was made by authors. Fourteen double-walled hard borosilicate glass tubes have been used. Evacuated tubes were inclined at angle of 45° from horizontal. Outer tubes of evacuated tubes were transparent, inner tubes were coated with a selective coating of Al-Ni/Al compound for better solar radiation absorption and minimum emittance. It has been shown that evacuated tube attachments to the solar still increased the water temperature inside the solar still for increment in the generation of distillate output. Evacuated tubes coupled solar still is not only produce distilled water during sunshine hours, but also off-sunshine hours due to heat storage effect. For the validation of the experimental results, a theoretical model is proposed based on the fundamentals of heat and mass transfer equations for solar still glass cover, water in basin and basin bottom. Two main statistical parameters—root mean square error and mean bias error—were calculated to compare the results of experiments and theoretical analysis. Closed matching of the experimental and theoretical results has been found.

Thermal Engineering. 2016;63(11):825-831
pages 825-831 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies