Solutions for Gas-Air Flow Paths and Environmental Protection from Harmful Power-Plant Emissions in the Framework of the Scientific School Created by L. A. Rikhter [On the Centenary of the Birth of L. A. Rikhter]


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the main scientific activities of the doctor of Technical Science, Professor Lev Aleksandrovich Rokhter, such as optimizing the shape of gas-air flow paths of thermal power plants, protecting the environment from harmful emissions, and identifying stack failures, which are currently being developed by his followers. For a systematic study of gas-air flow path components, L.A. Richter applied a technique based on the theory of complex variable and conformal mapping, which makes it possible to find optimal aerodynamic configuration of the gas-air flow path components. By means of the methodology developed by him, gas-air flow path research is currently carried out using Solid Works and Flow Vision application packages. Examples of optimizing the design of flue gas ducts with allowance for aerodynamic forces are given. The professor formulated the reasons and described the mechanism of structural collapse of reinforced concrete and brick stack constructions based on a theory of the occurrence of static pressures in the gas exhaust duct under certain conditions, which contribute to the penetration of aggressive substances of flue gas to the outer structural surface. In the last decade, works that additionally consider the flue gas mass transfer effect on the stack have become widespread. L.A. Richter proved that the problem of estimating the concentrations of impurities in TPP stack emissions is much more complicated under real conditions. This is due to the need to take into account the actual state of the atmosphere and its heterogeneous turbulent structure as well as the obligatory allowance for the rise of the stack plume over the stack mouth. Studies of his followers have shown that the scattering region of harmful substances is significantly reduced when a selfenvelopment phenomenon occurs under certain conditions. The professor’s contribution to the development of the methodology for finding economically optimal rates in various gas-air flow path components, as well as the creation of new structural components of electrostatic precipitators, which are currently widely used in practice, is also shown.

About the authors

V. B. Prokhorov

National Research University Moscow Power Engineering Institute (NRU MPEI)

Email: chernovser@gmail.com
Russian Federation, Moscow, 111250

S. L. Chernov

National Research University Moscow Power Engineering Institute (NRU MPEI)

Author for correspondence.
Email: chernovser@gmail.com
Russian Federation, Moscow, 111250

B. G. Tuval’baev

OOO ENIV

Email: chernovser@gmail.com
Russian Federation, Moscow, 107023


Copyright (c) 2018 Pleiades Publishing, Inc.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies