Change in working characteristics of the steam turbine metal with operating time of more than 330000 hours


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It’s chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.

About the authors

V. I. Gladshteyn

All-Russia Thermal Engineering Institute

Author for correspondence.
Email: resurstec@mail.ru
Russian Federation, Moscow, 109280

A. I. Troitskiy

All-Russia Thermal Engineering Institute

Email: resurstec@mail.ru
Russian Federation, Moscow, 109280


Copyright (c) 2017 Pleiades Publishing, Inc.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies