Nonlocal Reductions of the Ablowitz–Ladik Equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Our purpose is to develop the inverse scattering transform for the nonlocal semidiscrete nonlinear Schrödinger equation (called the Ablowitz–Ladik equation) with \(\mathcal{PT}\) symmetry. This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scattering data, and the fundamental analytic solutions. In addition, we study the spectral properties of the associated discrete Lax operator. Based on the formulated (additive) Riemann–Hilbert problem, we derive the one- and two-soliton solutions for the nonlocal Ablowitz–Ladik equation. Finally, we prove the completeness relation for the associated Jost solutions. Based on this, we derive the expansion formula over the complete set of Jost solutions. This allows interpreting the inverse scattering transform as a generalized Fourier transform.

Авторлар туралы

G. Grahovski

Department of Mathematical Sciences

Хат алмасуға жауапты Автор.
Email: grah@essex.ac.uk
Ұлыбритания, Colchester

A. Mohammed

Department of Mathematical Sciences

Email: grah@essex.ac.uk
Ұлыбритания, Colchester

H. Susanto

Department of Mathematical Sciences

Email: grah@essex.ac.uk
Ұлыбритания, Colchester

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018