Multiparametric Families of Solutions of the Kadomtsev–Petviashvili-I Equation, the Structure of Their Rational Representations, and Multi-Rogue Waves
- Autores: Gaillard P.1
-
Afiliações:
- Université de Bourgogne, Institut de mathématiques de Bourgogne
- Edição: Volume 196, Nº 2 (2018)
- Páginas: 1174-1199
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171884
- DOI: https://doi.org/10.1134/S0040577918080068
- ID: 171884
Citar
Resumo
We construct solutions of the Kadomtsev–Petviashvili-I equation in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N−1 parameters. They can also be written as a quotient of two polynomials of degree 2N(N +1) in x, y, and t depending on 2N−2 parameters. The maximum of the modulus of these solutions at order N is equal to 2(2N + 1)2. We explicitly construct the expressions up to the order six and study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters.
Palavras-chave
Sobre autores
P. Gaillard
Université de Bourgogne, Institut de mathématiques de Bourgogne
Autor responsável pela correspondência
Email: Pierre.Gaillard@u-bourgogne.fr
França, Dijon
Arquivos suplementares
