Invariant manifolds and Lax pairs for integrable nonlinear chains
- 作者: Habibullin I.T.1,2, Khakimova A.R.1,2
-
隶属关系:
- Institute of Mathematics with Computing Center
- Bashkir State University
- 期: 卷 191, 编号 3 (2017)
- 页面: 793-810
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171253
- DOI: https://doi.org/10.1134/S0040577917060010
- ID: 171253
如何引用文章
详细
We continue the previously started study of the development of a direct method for constructing the Lax pair for a given integrable equation. This approach does not require any addition assumptions about the properties of the equation. As one equation of the Lax pair, we take the linearization of the considered nonlinear equation, and the second equation of the pair is related to its generalized invariant manifold. The problem of seeking the second equation reduces to simple but rather cumbersome calculations and, as examples show, is effectively solvable. It is remarkable that the second equation of this pair allows easily finding a recursion operator describing the hierarchy of higher symmetries of the equation. At first glance, the Lax pairs thus obtained differ from usual ones in having a higher order or a higher matrix dimensionality. We show with examples that they reduce to the usual pairs by reducing their order. As an example, we consider an integrable double discrete system of exponential type and its higher symmetry for which we give the Lax pair and construct the conservation laws.
作者简介
I. Habibullin
Institute of Mathematics with Computing Center; Bashkir State University
编辑信件的主要联系方式.
Email: habibullinismagil@gmail.com
俄罗斯联邦, Ufa; Ufa
A. Khakimova
Institute of Mathematics with Computing Center; Bashkir State University
Email: habibullinismagil@gmail.com
俄罗斯联邦, Ufa; Ufa
补充文件
