Invariant manifolds and Lax pairs for integrable nonlinear chains
- Authors: Habibullin I.T.1,2, Khakimova A.R.1,2
-
Affiliations:
- Institute of Mathematics with Computing Center
- Bashkir State University
- Issue: Vol 191, No 3 (2017)
- Pages: 793-810
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171253
- DOI: https://doi.org/10.1134/S0040577917060010
- ID: 171253
Cite item
Abstract
We continue the previously started study of the development of a direct method for constructing the Lax pair for a given integrable equation. This approach does not require any addition assumptions about the properties of the equation. As one equation of the Lax pair, we take the linearization of the considered nonlinear equation, and the second equation of the pair is related to its generalized invariant manifold. The problem of seeking the second equation reduces to simple but rather cumbersome calculations and, as examples show, is effectively solvable. It is remarkable that the second equation of this pair allows easily finding a recursion operator describing the hierarchy of higher symmetries of the equation. At first glance, the Lax pairs thus obtained differ from usual ones in having a higher order or a higher matrix dimensionality. We show with examples that they reduce to the usual pairs by reducing their order. As an example, we consider an integrable double discrete system of exponential type and its higher symmetry for which we give the Lax pair and construct the conservation laws.
About the authors
I. T. Habibullin
Institute of Mathematics with Computing Center; Bashkir State University
Author for correspondence.
Email: habibullinismagil@gmail.com
Russian Federation, Ufa; Ufa
A. R. Khakimova
Institute of Mathematics with Computing Center; Bashkir State University
Email: habibullinismagil@gmail.com
Russian Federation, Ufa; Ufa
Supplementary files
