Approximate formulas for moderately small eikonal amplitudes
- 作者: Kisselev A.V.1
-
隶属关系:
- Institute for High Energy Physics
- 期: 卷 188, 编号 2 (2016)
- 页面: 1197-1209
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170718
- DOI: https://doi.org/10.1134/S0040577916080055
- ID: 170718
如何引用文章
详细
We consider the eikonal approximation for moderately small scattering amplitudes. To find numerical estimates of these approximations, we derive formulas that contain no Bessel functions and consequently no rapidly oscillating integrands. To obtain these formulas, we study improper integrals of the first kind containing products of the Bessel functions J0(z). We generalize the expression with four functions J0(z) and also find expressions for the integrals with the product of five and six Bessel functions. We generalize a known formula for the improper integral with two functions Jυ (az) to the case with noninteger υ and complex a.
作者简介
A. Kisselev
Institute for High Energy Physics
编辑信件的主要联系方式.
Email: alexandre.kisselev@ihep.ru
俄罗斯联邦, Protvino, Moscow Oblast
补充文件
