🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Schrödinger potentials solvable in terms of the confluent Heun functions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We show that if the potential is proportional to an energy-independent continuous parameter, then there exist 15 choices for the coordinate transformation that provide energy-independent potentials whose shape is independent of that parameter and for which the one-dimensional stationary Schrödinger equation is solvable in terms of the confluent Heun functions. All these potentials are also energy-independent and are determined by seven parameters. Because the confluent Heun equation is symmetric under transposition of its regular singularities, only nine of these potentials are independent. Five of the independent potentials are different generalizations of either a hypergeometric or a confluent hypergeometric classical potential, one potential as special cases includes potentials of two hypergeometric types (the Morse confluent hypergeometric and the Eckart hypergeometric potentials), and the remaining three potentials include five-parameter conditionally integrable confluent hypergeometric potentials. Not one of the confluent Heun potentials, generally speaking, can be transformed into any other by a parameter choice.

About the authors

A. M. Ishkhanyan

Institute for Physical Research; Armenian State Pedagogical University; Institute of Physics and Technology

Author for correspondence.
Email: aishkhanyan@gmail.com
Armenia, Ashtarak; Yerevan; Tomsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.