Translation-invariant p-adic quasi-Gibbs measures for the Ising–Vannimenus model on a Cayley tree


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the p-adic Ising–Vannimenus model on the Cayley tree of order k = 2. This model contains nearest-neighbor and next-nearest-neighbor interactions. We investigate the model using a new approach based on measure theory (in the p-adic sense) and describe all translation-invariant p-adic quasi-Gibbs measures associated with the model. As a consequence, we can prove that a phase transition exists in the model. Here, “phase transition” means that there exist at least two nontrivial p-adic quasi-Gibbs measures such that one is bounded and the other is unbounded. The methods used are inapplicable in the real case.

Sobre autores

F. Mukhamedov

Department of Computational and Theoretical Sciences, Faculty of Science

Autor responsável pela correspondência
Email: far75m@yandex.ru
Malásia, Pahang

M. Saburov

Department of Computational and Theoretical Sciences, Faculty of Science

Email: far75m@yandex.ru
Malásia, Pahang

O. Khakimov

Institute of Mathematics

Email: far75m@yandex.ru
Uzbequistão, Tashkent

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016