Ermakov–Pinney and Emden–Fowler Equations: New Solutions from Novel Bäcklund Transformations
- Авторы: Carillo S.1,2, Zullo F.3
-
Учреждения:
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria
- Instituto Nazionale di Fisica Nucleare
- DICATAM
- Выпуск: Том 196, № 3 (2018)
- Страницы: 1268-1281
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171904
- DOI: https://doi.org/10.1134/S0040577918090027
- ID: 171904
Цитировать
Аннотация
We study the class of nonlinear ordinary differential equations y″ y = F(z, y2), where F is a smooth function. Various ordinary differential equations with a well-known importance for applications belong to this class of nonlinear ordinary differential equations. Indeed, the Emden–Fowler equation, the Ermakov–Pinney equation, and the generalized Ermakov equations are among them. We construct Bäcklund transformations and auto-Bäcklund transformations: starting from a trivial solution, these last transformations induce the construction of a ladder of new solutions admitted by the given differential equations. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficult to apply.
Об авторах
S. Carillo
Dipartimento di Scienze di Base e Applicate per l’Ingegneria; Instituto Nazionale di Fisica Nucleare
Автор, ответственный за переписку.
Email: sandra.carillo@sbai.uniroma1.it
Италия, Rome; Sezione di Roma 1, Rome
F. Zullo
DICATAM
Email: sandra.carillo@sbai.uniroma1.it
Италия, Brescia
Дополнительные файлы
