Functional Integrals for the Bogoliubov Gaussian Measure: Exact Asymptotic Forms
- 作者: Fatalov V.R.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 195, 编号 2 (2018)
- 页面: 641-657
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171750
- DOI: https://doi.org/10.1134/S004057791805001X
- ID: 171750
如何引用文章
详细
We prove theorems on the exact asymptotic forms as u → ∞ of two functional integrals over the Bogoliubov measure μB of the forms
\(\int_{C[0,\beta ]} {[\int_0^\beta {|x(t){|^p}dt{]^u}d{\mu _B}(x)} } ,\;\int_{C(0,\beta )} {\exp \left\{ {\mu {{(\int_0^\beta {|x(t){|^p}dt} )}^{a/p}}} \right\}d{\mu _B}(x)} \)![]()
for p = 4, 6, 8, 10 with p > p0, where p0 = 2+4π2/β2ω2 is the threshold value, β is the inverse temperature, ω is the eigenfrequency of the harmonic oscillator, and 0 < α < 2. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.作者简介
V. Fatalov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: vrfatalov@yandex.ru
俄罗斯联邦, Moscow
补充文件
