Functional Integrals for the Bogoliubov Gaussian Measure: Exact Asymptotic Forms
- Авторы: Fatalov V.R.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 195, № 2 (2018)
- Страницы: 641-657
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171750
- DOI: https://doi.org/10.1134/S004057791805001X
- ID: 171750
Цитировать
Аннотация
We prove theorems on the exact asymptotic forms as u → ∞ of two functional integrals over the Bogoliubov measure μB of the forms
\(\int_{C[0,\beta ]} {[\int_0^\beta {|x(t){|^p}dt{]^u}d{\mu _B}(x)} } ,\;\int_{C(0,\beta )} {\exp \left\{ {\mu {{(\int_0^\beta {|x(t){|^p}dt} )}^{a/p}}} \right\}d{\mu _B}(x)} \)![]()
for p = 4, 6, 8, 10 with p > p0, where p0 = 2+4π2/β2ω2 is the threshold value, β is the inverse temperature, ω is the eigenfrequency of the harmonic oscillator, and 0 < α < 2. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.Об авторах
V. Fatalov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vrfatalov@yandex.ru
Россия, Moscow
Дополнительные файлы
