Functional Integrals for the Bogoliubov Gaussian Measure: Exact Asymptotic Forms


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove theorems on the exact asymptotic forms as u → ∞ of two functional integrals over the Bogoliubov measure μB of the forms

\(\int_{C[0,\beta ]} {[\int_0^\beta {|x(t){|^p}dt{]^u}d{\mu _B}(x)} } ,\;\int_{C(0,\beta )} {\exp \left\{ {\mu {{(\int_0^\beta {|x(t){|^p}dt} )}^{a/p}}} \right\}d{\mu _B}(x)} \)
for p = 4, 6, 8, 10 with p > p0, where p0 = 2+4π22ω2 is the threshold value, β is the inverse temperature, ω is the eigenfrequency of the harmonic oscillator, and 0 < α < 2. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.

Sobre autores

V. Fatalov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vrfatalov@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018