🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Improved image method for a holographic description of conical defects


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The geodesics prescription in the holographic approach in the Lorentzian signature is applicable only for geodesics connecting spacelike-separated points at the boundary because there are no timelike geodesics that reach the boundary. Also, generally speaking, there is no direct analytic Euclidean continuation for a general background, such as a moving particle in the AdS space. We propose an improved geodesic image method for two-point Lorentzian correlators that is applicable for arbitrary time intervals when the space–time is deformed by point particles. We show that such a prescription agrees with the case where the analytic continuation exists and also with the previously used prescription for quasigeodesics. We also discuss some other applications of the improved image method: holographic entanglement entropy and multiple particles in the AdS3 space.

Sobre autores

I. Aref’eva

Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: arefeva@mi.ras.ru
Rússia, Moscow

M. Khramtsov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: arefeva@mi.ras.ru
Rússia, Moscow

M. Tikhanovskaya

Steklov Mathematical Institute of Russian Academy of Sciences

Email: arefeva@mi.ras.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016