Conversion of second-class constraints and resolving the zero-curvature conditions in the geometric quantization theory


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the approach to geometric quantization based on the conversion of second-class constraints, we resolve the corresponding nonlinear zero-curvature conditions for the extended symplectic potential. From the zero-curvature conditions, we deduce new linear equations for the extended symplectic potential. We show that solutions of the new linear equations also satisfy the zero-curvature condition. We present a functional solution of these new linear equations and obtain the corresponding path integral representation. We investigate the general case of a phase superspace where boson and fermion coordinates are present on an equal basis.

作者简介

I. Batalin

Lebedev Physical Institute, RAS

编辑信件的主要联系方式.
Email: batalin@lpi.ru
俄罗斯联邦, Moscow

P. Lavrov

Tomsk State Pedagogical University

Email: batalin@lpi.ru
俄罗斯联邦, Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016