Discretization of Hamiltonian Systems and Intersection Theory
- Авторлар: Tsiganov A.V.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 197, № 3 (2018)
- Беттер: 1806-1822
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172043
- DOI: https://doi.org/10.1134/S0040577918120103
- ID: 172043
Дәйексөз келтіру
Аннотация
We discuss the possibility of using the intersection points of the common level surface of integrals of motion with an auxiliary curve to construct finite-difference equations corresponding to different discretizations of the original integrable system. As an example, we consider the generalized one-dimensional oscillator with third- and fifth-degree nonlinearity, for which we show that the intersection divisors of the hyperelliptic curve with straight lines, quadrics, and cubics generate families of integrable discrete maps.
Авторлар туралы
A. Tsiganov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: andrey.tsiganov@gmail.com
Ресей, St. Petersburg
Қосымша файлдар
